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Motivation

The detection and removal of buried unexploded ordnance (UXO) is an expensive and
difficult task. In the United States, an estimated 11 million acres(44515 km?, which is about 64
% of entire Georgia’s territory) of land and one million acres (4046.9 km? ) of underwater lands
may be contaminated with UXO [1-7]. Some of these lands are military practice ranges, to be
turned over to the public for recreation or economical Exploitation; others are the sites of long
passed conflicts. UXO may remain dangerous over many years. Cuban television reported the
detonation of a projectile in Santiago Harbor, some 100 years after it was fired during the
Spanish American War. Cuban sources noted that it was the seventh such piece of ordnance
from the war to explode in Cuba over the past thirty years. On a vastly larger scale, since 1946
the French Department du Dominate has collected and destroyed more than 18 million artillery
shells and 600,000 bombs dropped from airplanes. However, near the city of Verdun, alone, it is
estimated that there are about 12 million unexploded shells still remaining from World War 1,
many in degraded condition and containing toxic materials. Elsewhere in France are sites where
hundreds of thousands or even millions of missiles rained down upon the landscape during that
conflict, sometimes only within a matter of hours or days.

During the First World War overall about 15% of bombs failed to detonate. Thus, even after
all the intervening time, the remains of this and other conflicts pose an enormous problem in
the present. Including military training areas and regions where peaceful uses of ordnance were
attempted, the problem of buried UXO is terribly widespread, from the jungles of Vietnam and
the warm beaches of Puerto Rico and Hawaii, to the glaciers of British Columbia and the
Aleutian Islands in Alaska.

The problem is more acute in European countries, where millions of buried UXOs remain
from two world wars, as well as in south East Asian countries. For an example, by an estimate
about 270 million bombs were dropped in Laos between 1964 and 1973. Out of this 80 million
bombs failed to explore and still remains dangerous for public.

The UXO continues to pose problem at active and former Soviet Union military bases. Such
as in Saloglu village, Agstafa district of Azerbaijan soviet army had the largest warehouses in the
South-Caucasus region, consisting of 138 bunkers. In 1991, when Azerbaijan regained
independence, the warehouse was destroyed by the soviet army before departing. As the result
of the explosion thousands pieces of UXO were scattered over a large area of 4,400 hectares
continuously posing a serious humanitarian, socio-economic and environmental threat to the
local population. Since the explosion, 152 UXO-related accidents with 32 people killed were
reported.

The problems have been worsening due to recent wars and ethnic conflict in worldwide,
including my country of Georgia. During recent Russia-Georgia war in 2008, cluster bombs
were dropped in Georgia. A cluster bomb consists of a few dozens of smaller sublimations that
are dispersed before detonation, to ensure coverage of the widest area possible. Part of the


http://www.regnum.ru/english/1049025.html

bumblers detonate at the cluster bomb's initial use. The rest of them remain on the surface as
landmines. Children are consequently the most common victims of these landmines. Munitions
of the sort were used in Iraq, Kosovo, Afghanistan, Lebanon, Vietnam and other places.

Mostly UXO are metallic or containing substantial metallic parts, which makes them easily
detectable with current metal detectors. However, metal detectors detect not only UXO-s, they
also detect all metallic targets as well. Recent studies have showed that, the over whelming task
of finding and removing these UXOs is hampered by the fact that approximately 95 % of the
costs are spent for digging non-UXO targets. Hence, accurate Discrimination techniques are
needed. Over last two decades, low frequency electromagnetic induction sensing technology
has merged as ultimate tool for subsurface UXO targets detection and discrimination.

Overall, UXO cleanup process consists three main parts: 1) Subsurface targets detection using
geophysical sensors; 2) The data processing and targets parameters extraction by solving inverse
electromagnetic induction problems; 3) Targets classification as UXO and non-UXO targets
using the extracted targets parameters. This thesis describes all upon mentioned three parts for
UXO classification. Namely, the work combines advanced physically complete forward and
inverse methods, which provide effective and accurate UXO classification from current state of
the art geophysical tensors data.

Objective and main results

The main objective of this work was to develop physically complete forward and inverse
models in combination with state-of-the-art signal processing methodologies for robust UXO
discrimination at live UXO sites using advanced electromagnetic induction (EMI) sensors data
sets.

To achieve this objective, in this thesis:
We developed/extended physically complete forward approaches:

e Hybrid MAS/TSA algorithm [1] for understanding underline physics of EMI
phenomenon.

e Normalized surface magnetic source model (NSMS) [2] for EMI sensors data
inversion and classification.

e Orthonormalized volume magnetic source model (ONVMS) [3] for next generation
EMI systems data analysis and subsurface multiple targets classification.

These models were combined with advanced signal processing and data-inversion
approaches, which provided robust regularization and classification feature parameters
estimations for targets intrinsic, such as magnetic polarizabilities, multi-static data matrix
eigenvalues, and extrinsic, i.e. targets locations and orientations. These advanced signal
processing algorithms are:



¢ Joint diagonalization for multi-target data pre-processing (JD) [4]
e Differential evolution (DE) [2, 5] for estimating targets locations and orientations.
o A field-potential (HAP) method to locate targets [6].

Our advanced forward-inverse and signal processing algorithms have been applied to
next generation sensors data sets collected at several live UXO sites.

» We developed site specific UXO libraries for each live UXO sites. These libraries were
used for targets classification via a finger-print matching technique.

» Our models were adapted to all next-generation sensors, including the MetalMapper,
TEMTADS, MPV, and BUD, data sets. The models were applied to blind live-site UXO
discriminations studies [7]. The studies have demonstrated the excellent discrimination
capabilities.

The theses structure:

Theses consist three main parts: first part provides a road map for implementing forward and
inverse electromagnetic induction numerical methods for UXO detection and classification
from basic physics to live UXO discrimination studies. In a real field the electromagnetic signals
become convoluted with noise due to the instrument, magnetic soil and widespread background
clutter. To understand and account for different noise source, the thesis provides mathematical
fundamentals, physical meanings and practical realizations of forward and inverse signal
processing approaches for unexploded

Specifically,

First the thesis outlines the combined Method of Auxiliary Sources (MAS) and thin skin
approximation (TSA), which is an advanced, physically complete forward EMI model, for
solving low frequency electromagnetic induction problems involving metallic objects placed in
heterogeneous magnetic and conducting soils. Then, the normalized surface magnetic source
(charge/dipole) model (NSMS), and ortho-normalized volume magnetic source (ONVMYS)
technique are presented for accurately representing the EMI responses of subsurface metallic
targets. Third, we formulate and develop an inversion framework featuring robust
regularization and parameter-determination methodologies (for both linear intrinsic signatures
and non-linear extrinsic particulars) based on advanced signal processing algorithms. Namely,
the models were combined with EMI data inversion approaches, such as the gradient search,
direct search-differential evolution and etc., for extracting targets intrinsic (effective dipole
polarizabilities) and extrinsic (locations and orientations) from advanced EMI sensor data;
Fourth, We combine EMI models and classification methodologies to process complex,



heterogeneous geophysical data, and finally we demonstrate the discrimination capability of the
combined approach by applying it to blind live-site UXO discrimination studies.

Overview of Chapter 1

The chapter 1 outlines the theoretical basis of the detailed 3d EMI solvers, and advanced fast
EMI forward models that we use to study low frequency EMI scattering phenomena and to
represent the EMI response of obscured targets, respectively. We first present the Method of
Auxiliary Sources (MAS) and thin skin approximation (TSA) for solving EMI problems in great
details. Then we show the single-dipole model, which is usually insufficient in itself for
representing targets EMI signals accurately. After that we introduce and study in detail the
NSMS model, which distributes dipoles on a closed surface surrounding a target of interest. And
then we derive and describe the ONVMS technique, which infuses dipoles throughout the
subsurface volume illuminated by a sensor. We end by describing a data-preprocessing
technique based on joint diagonalization that estimates the number of targets in a measurement
with no need for data inversion; the method, moreover, can provide initial estimates of target
locations and perform rudimentary discrimination.

The Method of Auxiliary Sources (MAS) for solution of the full electromagnetic (EMI) problem
for penetrable, highly conducting and permeable metallic targets. The MAS is a numerical
technique, originally designed for solving various electromagnetic radiations and scattering
problems. It has been demonstrated that the MAS is a robust, easy to implement, accurate and
sufficient method for studying a wide range of electromagnetic problems, such as investigation
of waveguide structures, antennas, scattering, electromagnetic wave propagation in complex
media, etc. Later MAS successfully was combined with small penetration approximation (SPA)
and thin skin approximations (TSA) for analysis of low frequency EMI scattering phenomena.
In standard MAS for EMI, boundary value problems are solved numerically by representing the
electromagnetic fields in each domain of the structure under investigation by a finite linear
combination of analytical solutions of the relevant field equations, corresponding to sources
situated at some distance away from the boundaries of each domain.

EMI scattering responses are usually expressed in terms of the induction number. It is well
established that the electromagnetic field inside a conductor decays over distances of the order
of the skin depth. This reduces the efficiency and accuracy of the MAS at high induction
numbers due to singularities that appear in the scattering matrix. To overcome this problem, a
combined MAS-thin skin approximation (MAS-TSA) has developed. The TSA is based on the
divergence-free Maxwell’s equation for the magnetic field and it approximates magnetic fields
normal derivatives with magnetic field on the targets surface. The model has been used to solve
a variety of EMI problems from the magnetostatic regime up to 1 MHz for land-based UXO
detection and discrimination.

In general UXO discrimination is a non-linear inverse problem, which requires high fidelity
forward models. The most frequently used method for representing the EMI response of a



metallic target in both frequency and time domains approximates the whole object with a set of
orthogonal co-located point dipoles that fire up in response to the primary field; the induced
dipole moment is related to the primary field through a symmetric polarizability tensor. The
use of this dipole approximation is motivated by its speed and simplicity; this simplicity,
however, rests on assumptions that often become problematic and limit the model’s usefulness.
One such assumption is that the buried target of interest is either far enough from the
transmitter loop, or small enough, that the primary field is essentially uniform throughout its
extent. Usually, complex targets composed of different materials and different sections that
contribute appreciably to the response—and, in the case of UXO, containing such complicating
features as fins and rings—simply cannot be modeled accurately with a single point dipole.
Such cases require more advanced methods that will capture the underlying physics correctly.
One such technique is the NSMS model.

The NSMS method can be considered as a generalized surface dipole model, and indeed reduces
to the point dipole model in a special limiting case. The NSMS approach models an object’s
response to the primary field of a sensor by distributing a set of equivalent elementary magnetic
sources—normally oriented dipoles in this case—over an auxiliary surface that surrounds it.
Such a surface distribution can be hypothetically generated by spreading positive magnetic
charge over the outer side of the equivalent surface (usually a prolate spheroid) and an identical
distribution of opposite sign on its inner side, resulting in a double layer of magnetic charge
separated by an infinitesimal distance. This double layer introduces the proper discontinuities
in the tangential components of the magnetic flux density vector but does not affect the
transition of its normal component, which must always be continuous given the lack of free
magnetic charges in nature. The resulting magnetic-moment distribution radiates a field that by
construction satisfies the governing EMI equations and can thus account for the secondary field
outside the object. The particulars of location and orientation are divided out by normalizing
the dipole density at every point with the component of the primary magnetic field normal to
the surface. The resulting surface amplitude of the NSMS distribution is a property of the
object, and its integral over the surface constitutes a sort of global magnetic polarizability that is
independent of the computational constructs—primary field, surrounding surface, object
location and orientation, etc.—introduced for its determination. The surface amplitude can be
determined directly for library-matching purposes by minimizing the difference between
measured and modeled data for a known combination of object and sensor at a given relative
location and orientation.

The NSMS technique has demonstrated good computational speed and superior classification
performance when applied to EMI datasets consisting of well-isolated single targets, but is
found to degrade quickly on both counts when confronted with multi-target cases. This has
forced us to generalize the model further and develop the ONVMS procedure. The ONVMS
model, a further extension of NSMS, is based on the assumption that a collection of subsurface
objects can be replaced with a set of magnetic dipole sources, distributed over a volume. Since
all actual radiating sources are located within the scatterers—rather than in the soil or air—the
spatial distribution of these fictitious dipoles (their amplitudes scaled by the primary field)



indicates the locations and orientations of any targets present inside the computational volume.
The great advantage of the ONVMS technique over the other models discussed above is that it
takes into account mutual couplings between different sections of the different targets while
simultaneously avoiding the appearance of singular matrices in multi-target situations. It is thus
gracefully indifferent to the number of targets: Once the amplitudes and the locations of the
corresponding dipoles are determined, one need only look at their clustering patterns, compute
the time-dependent total polarizability tensor for each group, and subsequently diagonalize
each such tensor using joint diagonalization. The resulting diagonal elements have been found
to be intrinsic to the objects they represent, and can be used, on their own or combined with
other quantities, in discrimination analysis. Recent ESTCP live-site discrimination studies have
clearly indicated the superior discrimination performance of the ONVMS method in
combination with the statistical processing approaches described below.

One of the main challenges one faces when attempting multi-target inversion and classification
is the inability to estimate the number of targets. In order to overcome this problem, we
implemented a technique based on joint diagonalization that estimates the number of targets
present in the field of view of the sensor as it takes a data shot, in real time and without
requiring a forward model, and, in a good number of cases, even provides the capability to
perform a quick inversion-free characterization and classification of these targets. JD
determines the eigenvalues and eigenvectors of a square time- or frequency-dependent multi-
static response (MSR) matrix synthesized directly from measured data. The number of nonzero
eigenvalues of the matrix (i.e., those above a noise threshold) is related to the number of
elementary sources in the illuminated cell; moreover, the time-decay patterns of these non-
vanishing eigenvalues are intrinsic properties of the targets to which the sources correspond
and can ultimately provide dependable classification features.

Overview of Chapter 2

Chapter 2 discusses inverse models: the methods used to harness the forward models so they
provide relevant intrinsic and extrinsic information starting from measured data. After
presenting some traditional gradient-search based methods and pointing out some of their
limitations we describe differential evolution (DE), a state-of-the-art global-search method,
similar in character to genetic algorithms, that has shown remarkable flexibility and usefulness.
We end by describing the HAP method, a semi-analytic non-iterative procedure to locate
buried targets.

Determining a buried object’s orientation and location is a non-linear problem. Inverse-
scattering problems are solved by determining an objective function, as a goodness-of-fit
measure between modeled and measured magnetic field data. Standard gradient search
approaches often suffer from a surfeit of local minima that sometimes result in incorrect
estimates for location and orientation. To avoid this problem we recently developed a different
class of global optimization search algorithms. One such technique is the Differential
Evolution(DE) method, a heuristic, parallel, direct-search method for minimizing non-linear
functions of continuous variables that is very easy to implement and has good convergence



properties. We combined DE with ONVMS to invert digital geophysical EMI data. All EMI
optimizations were split into linear and nonlinear parts, iterating between them to minimize
the objective function. Once the target locations are found, the amplitudes of responding
ONVMS are determined and used to classify the object relative to items of interest.

In the EMI regime, the secondary magnetic fields measured by the EMI receivers are induced
by eddy currents magnetic dipoles which are distributed non-uniformly inside the scatterer.
There are some particular points, named “scattered field singularities” (SFS), where most of
these sources are concentrated. Recent studies show that under certain conditions the entire
scatterer can be replaced with several responding elementary sources by putting them at SFS
points. We have found a new analytic expression for estimating the location, orientation, and
polarizability elements of a buried object starting from measured EMI data without solving
traditional ill-posed inverse-scattering problems. The algorithm (dubbed “HAP”) is based on the
fact that a target’s response can be approximated by dipole sources concentrated at SFS points. It
utilizes three global values at a single location in space: (1) the magnetic field vector H, (2) the
vector potential A, and (3) the scalar magnetic potential ¥ . Since among these quantities only
the H field (and sometimes only one of its components) is measurable, we employ a variation of
the NSMS model to obtain A and ¥ we distribute elementary sources on an auxiliary planar
layer, located between the sensor and the object, and find their amplitudes by fitting measured
data.

Overview of Chapter 3

Chapter 3 presents and describes the next-generation EMI sensors—the METALMEPPER, the
TEMTADS array, the MPV portable instrument, and the BUD system—that took all the data we
use and that represent the state of the UXO remediation hardware. We present the results of
several testing and validation studies carried out on laboratory, test stand and US army
standardized Aberdeen Proving Ground in Maryland test-site data from these devices. Also
Provides a detailed account of the discrimination and classification studies performed on data
from actual UXO sites—the Camp Sibert in Alabama, Camp San Luis Obispo in California, and
Camp Butner in North Carolina—in which several combinations of the techniques presented in
the previous chapters were used. We describe our solution strategies and the results we
obtained.
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Abstract

Unexploded Ordinances (UXO) cleanup is one of most pressing environmental problems
worldwide. Most if not all UXO are metallic or containing substantial amount of metals. Therefore
they can easily be detected with metal detectors. However, the well-known and prohibitive cost of
carefully excavating all geophysical anomalies detected at lands contaminated with unexploded
ordnance (UXO) is one of the greatest impediments to performing an efficient and thorough cleanup
of former battlefields and of USA Department of Defense (DOD) and Department of Energy (DOE)
sites. Thus there are argent needs for innovative discrimination techniques that can quickly and
reliably distinguish between hazardous UXO and non-hazardous metallic items. The key to success
lies in the development of advanced processing techniques that can analyze and process
sophisticated magnetic or electromagnetic induction data, with its novel waveforms, ever improving
quality, and vector or tensor character, so as to maximize the probability of correct classification
and minimize the false-alarm rate.

This thesis provides a road map for implementing forward and inverse electromagnetic induction
numerical methods for UXO detection and classification from basic physics to live UXO
discrimination studies. It develops and validates innovative, robust, and practical approaches for
UXO localization and classification under realistic (noisy, cluttered background) field conditions by
combining advanced electromagnetic induction (EMI) forward and inverse models. In a real field
the electromagnetic signals become convoluted with noise due to the instrument, magnetic soil and
widespread background clutter. To understand and account for different noise source, the thesis
provides mathematical fundamentals, physical meanings and practical realizations of forward and
inverse signal processing approaches for unexploded ordnance (UXO) detection and discrimination
at live-UXO sites.



Namely, first the thesis outlines the Method of Auxiliary Sources (MAS), which is an advanced,
physically complete forward EMI model, for solving low frequency electromagnetic induction
problems involving metallic objects placed in heterogeneous magnetic and conducting soils.

Then, the normalized surface magnetic source (charge/dipole) model (NSMS), and ortho-
normalized volume magnetic source (ONVMS) technique are presented for accurately representing
the EMI responses of subsurface metallic targets. The models were combined with EMI data
inversion approaches, such as the gradient search, direct search-differential evolution and etc., for
extracting targets intrinsic (effective dipole polarizabilities) and extrinsic (locations and
orientations) from advanced EMI sensor data; third we used extracted intrinsic parameters for
discriminating UXO targets from non-hazardous anomalies.

Finally, the combined advanced EMI forward, inverse and classification models were applied to
ESTCP live site UXO data sets. Live site discrimination studies showed the excellent
discrimination performance of the advanced models when applied to next-generation-sensor data
collected at various live sites, such as Camp Butner, NC and Camp Beale, CA as well as APG test
sites. The technology was able to single out UXO ranging in caliber from 20 mm up to 155 mm. In
addition, the ONVMS technique was seen to provide excellent classification in both single- and
multiple-target scenarios when combined with advanced multi-axis/transmitter/receiver sensors
data.
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Introduction

Motivation

The detection and removal of buried unexploded ordnance (UXO) is an expensive
and difficult task. In the United States, an estimated 11 million acres(44515 km?, which is
about 64 % of entire Georgia’s territory) of land and one million acres (4046.9 km? ) of
underwater lands may be contaminated with UXO [1-7]. Some of these lands are military
practice ranges, to be turned over to the public for recreation or economical Exploitation;
others are the sites of long passed conflicts. UXO may remain dangerous over many
years. Cuban television reported the detonation of a projectile in Santiago Harbor, some
100 years after it was fired during the Spanish American War. Cuban sources noted that it
was the seventh such piece of ordnance from the war to explode in Cuba over the past
thirty years. On a vastly larger scale, since 1946 the French Department du Dominate has
collected and destroyed more than 18 million artillery shells and 600,000 bombs dropped
from airplanes. However, near the city of Verdun, alone, it is estimated that there are
about 12 million unexploded shells still remaining from World War 1, many in degraded
condition and containing toxic materials. Elsewhere in France are sites where hundreds of
thousands or even millions of missiles rained down upon the landscape during that
conflict, sometimes only within a matter of hours or days.

During the First World War overall about 15% of bombs failed to detonate. Thus, even
after all the intervening time, the remains of this and other conflicts pose an enormous
problem in the present. Including military training areas and regions where peaceful uses
of ordnance were attempted, the problem of buried UXO is terribly widespread, from the
jungles of Vietnam and the warm beaches of Puerto Rico and Hawaii, to the glaciers of
British Columbia and the Aleutian Islands in Alaska.

The problem is more acute in European countries, where millions of buried UXOs
remain from two world wars, as well as in south East Asian countries. For an example, by
an estimate about 270 million bombs were dropped in Laos between 1964 and 1973. Out
of this 80 million bombs failed to explore and still remains dangerous for public.

The UXO continues to pose problem at active and former Soviet Union military bases.
Such as in Saloglu village, Agstafa district of Azerbaijan soviet army had the largest
warehouses in the South-Caucasus region, consisting of 138 bunkers. In 1991, when
Azerbaijan regained independence, the warehouse was destroyed by the soviet army
before departing. As the result of the explosion thousands pieces of UXO were scattered
over a large area of 4,400 hectares continuously posing a serious humanitarian, socio-
economic and environmental threat to the local population. Since the explosion, 152
UXO-related accidents with 32 people killed were reported.

The problems have been worsening due to recent wars and ethnic conflict in worldwide,
including my country of Georgia. During recent Russia-Georgia war in 2008, cluster
bombs were dropped in Georgia. A cluster bomb consists of a few dozens of smaller
sublimations that are dispersed before detonation, to ensure coverage of the widest area
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possible. Part of the bumblers detonate at the cluster bomb's initial use. The rest of them
remain on the surface as landmines. Children are consequently the most common victims
of these landmines. Munitions of the sort were used in Iraq, Kosovo, Afghanistan,
Lebanon, Vietnam and other places.

Mostly UXO are metallic or containing substantial metallic parts, which makes them
easily detectable with current metal detectors. However, metal detectors detect not only
UXO-s, they also detect all metallic targets as well. Recent studies have showed that, the
over whelming task of finding and removing these UXOs is hampered by the fact that
approximately 95 % of the costs are spent for digging non-UXO targets. Hence, accurate
Discrimination techniques are needed. Over last two decades, low frequency
electromagnetic induction sensing technology has merged as ultimate tool for subsurface
UXO targets detection and discrimination.

Overall, UXO cleanup process consists three main parts: 1) Subsurface targets detection
using geophysical sensors; 2) The data processing and targets parameters extraction by
solving inverse electromagnetic induction problems; 3) Targets classification as UXO
and non-UXO targets using the extracted targets parameters. This thesis describes all
upon mentioned three parts for UXO classification. Namely, the work combines
advanced physically complete forward and inverse methods, which provide effective and
accurate UXO classification from current state of the art geophysical tensors data.

Objective and main results

The main objective of this work was to develop physically complete forward and inverse
models in combination with state-of-the-art signal processing methodologies for robust
UXO discrimination at live UXO sites using advanced electromagnetic induction (EMI)
sensors data sets.

To achieve this objective, in this thesis:
We developed/extended physically complete forward approaches:

e Hybrid MAS/TSA algorithm [1] for understanding underline physics of
EMI phenomenon.

e Normalized surface magnetic source model (NSMS) [2] for EMI sensors
data inversion and classification.

e Orthonormalized volume magnetic source model (ONVMS) [3] for next
generation EMI systems data analysis and subsurface multiple targets
classification.

These models were combined with advanced signal processing and data-inversion
approaches, which provided robust regularization and classification feature parameters
estimations for targets intrinsic, such as magnetic polarizabilities, multi-static data matrix
eigenvalues, and extrinsic, i.e. targets locations and orientations. These advanced signal
processing algorithms are:



e Joint diagonalization for multi-target data pre-processing (JD) [4]

e Differential evolution (DE) [2, 5] for estimating targets locations and
orientations.

e A field-potential (HAP) method to locate targets [6].

Our advanced forward-inverse and signal processing algorithms have been applied to
next generation sensors data sets collected at several live UXO sites.

» We developed site specific UXO libraries for each live UXO sites. These libraries
were used for targets classification via a finger-print matching technique.

» Our models were adapted to all next-generation sensors, including the
MetalMapper, TEMTADS, MPV, and BUD, data sets. The models were applied
to blind live-site UXO discriminations studies [7]. The studies have demonstrated
the excellent discrimination capabilities.

The theses structure

Theses consist three main parts: first part provides a road map for implementing forward
and inverse electromagnetic induction numerical methods for UXO detection and
classification from basic physics to live UXO discrimination studies. In a real field the
electromagnetic signals become convoluted with noise due to the instrument, magnetic
soil and widespread background clutter. To understand and account for different noise
source, the thesis provides mathematical fundamentals, physical meanings and practical
realizations of forward and inverse signal processing approaches for unexploded

Specifically,

First the thesis outlines the combined Method of Auxiliary Sources (MAS) and thin skin
approximation (TSA), which is an advanced, physically complete forward EMI model,
for solving low frequency electromagnetic induction problems involving metallic objects
placed in heterogeneous magnetic and conducting soils. Then, the normalized surface
magnetic source (charge/dipole) model (NSMS), and ortho-normalized volume magnetic
source (ONVMS) technique are presented for accurately representing the EMI responses
of subsurface metallic targets. Third, we formulate and develop an inversion framework
featuring robust regularization and parameter-determination methodologies (for both
linear intrinsic signatures and non-linear extrinsic particulars) based on advanced signal
processing algorithms. Namely, the models were combined with EMI data inversion
approaches, such as the gradient search, direct search-differential evolution and etc., for
extracting targets intrinsic (effective dipole polarizabilities) and extrinsic (locations and
orientations) from advanced EMI sensor data; Fourth, We combine EMI models and
classification methodologies to process complex, heterogeneous geophysical data, and
finally we demonstrate the discrimination capability of the combined approach by
applying it to blind live-site UXO discrimination studies.



Overview of Chapter 1

The chapter 1 outlines the theoretical basis of the detailed 3d EMI solvers, and advanced
fast EMI forward models that we use to study low frequency EMI scattering phenomena
and to represent the EMI response of obscured targets, respectively. We first present the
Method of Auxiliary Sources (MAS) and thin skin approximation (TSA) for solving EMI
problems in great details. Then we show the single-dipole model, which is usually
insufficient in itself for representing targets EMI signals accurately. After that we
introduce and study in detail the NSMS model, which distributes dipoles on a closed
surface surrounding a target of interest. And then we derive and describe the ONVMS
technique, which infuses dipoles throughout the subsurface volume illuminated by a
sensor. We end by describing a data-preprocessing technique based on joint
diagonalization that estimates the number of targets in a measurement with no need for
data inversion; the method, moreover, can provide initial estimates of target locations and
perform rudimentary discrimination.

The Method of Auxiliary Sources (MAS) for solution of the full electromagnetic (EMI)
problem for penetrable, highly conducting and permeable metallic targets. The MAS is a
numerical technique, originally designed for solving various electromagnetic radiations
and scattering problems. It has been demonstrated that the MAS is a robust, easy to
implement, accurate and sufficient method for studying a wide range of electromagnetic
problems, such as investigation of waveguide structures, antennas, scattering,
electromagnetic wave propagation in complex media, etc. Later MAS successfully was
combined with small penetration approximation (SPA) and thin skin approximations
(TSA) for analysis of low frequency EMI scattering phenomena. In standard MAS for
EMI, boundary value problems are solved numerically by representing the
electromagnetic fields in each domain of the structure under investigation by a finite
linear combination of analytical solutions of the relevant field equations, corresponding
to sources situated at some distance away from the boundaries of each domain.

EMI scattering responses are usually expressed in terms of the induction number. It is
well established that the electromagnetic field inside a conductor decays over distances of
the order of the skin depth. This reduces the efficiency and accuracy of the MAS at high
induction numbers due to singularities that appear in the scattering matrix. To overcome
this problem, a combined MAS-thin skin approximation (MAS-TSA) has developed. The
TSA is based on the divergence-free Maxwell’s equation for the magnetic field and it
approximates magnetic fields normal derivatives with magnetic field on the targets
surface. The model has been used to solve a variety of EMI problems from the
magnetostatic regime up to 1 MHz for land-based UXO detection and discrimination.

In general UXO discrimination is a non-linear inverse problem, which requires high
fidelity forward models. The most frequently used method for representing the EMI
response of a metallic target in both frequency and time domains approximates the whole
object with a set of orthogonal co-located point dipoles that fire up in response to the
primary field; the induced dipole moment is related to the primary field through a
symmetric polarizability tensor. The use of this dipole approximation is motivated by its



speed and simplicity; this simplicity, however, rests on assumptions that often become
problematic and limit the model’s usefulness. One such assumption is that the buried
target of interest is either far enough from the transmitter loop, or small enough, that the
primary field is essentially uniform throughout its extent. Usually, complex targets
composed of different materials and different sections that contribute appreciably to the
response—and, in the case of UXO, containing such complicating features as fins and
rings—simply cannot be modeled accurately with a single point dipole. Such cases
require more advanced methods that will capture the underlying physics correctly. One
such technique is the NSMS model.

The NSMS method can be considered as a generalized surface dipole model, and indeed
reduces to the point dipole model in a special limiting case. The NSMS approach models
an object’s response to the primary field of a sensor by distributing a set of equivalent
elementary magnetic sources—normally oriented dipoles in this case—over an auxiliary
surface that surrounds it. Such a surface distribution can be hypothetically generated by
spreading positive magnetic charge over the outer side of the equivalent surface (usually
a prolate spheroid) and an identical distribution of opposite sign on its inner side,
resulting in a double layer of magnetic charge separated by an infinitesimal distance. This
double layer introduces the proper discontinuities in the tangential components of the
magnetic flux density vector but does not affect the transition of its normal component,
which must always be continuous given the lack of free magnetic charges in nature. The
resulting magnetic-moment distribution radiates a field that by construction satisfies the
governing EMI equations and can thus account for the secondary field outside the object.
The particulars of location and orientation are divided out by normalizing the dipole
density at every point with the component of the primary magnetic field normal to the
surface. The resulting surface amplitude of the NSMS distribution is a property of the
object, and its integral over the surface constitutes a sort of global magnetic polarizability
that is independent of the computational constructs—primary field, surrounding surface,
object location and orientation, etc.—introduced for its determination. The surface
amplitude can be determined directly for library-matching purposes by minimizing the
difference between measured and modeled data for a known combination of object and
sensor at a given relative location and orientation.

The NSMS technique has demonstrated good computational speed and superior
classification performance when applied to EMI datasets consisting of well-isolated
single targets, but is found to degrade quickly on both counts when confronted with
multi-target cases. This has forced us to generalize the model further and develop the
ONVMS procedure. The ONVMS model, a further extension of NSMS, is based on the
assumption that a collection of subsurface objects can be replaced with a set of magnetic
dipole sources, distributed over a volume. Since all actual radiating sources are located
within the scatterers—rather than in the soil or air—the spatial distribution of these
fictitious dipoles (their amplitudes scaled by the primary field) indicates the locations and
orientations of any targets present inside the computational volume. The great advantage
of the ONVMS technique over the other models discussed above is that it takes into
account mutual couplings between different sections of the different targets while
simultaneously avoiding the appearance of singular matrices in multi-target situations. It



Is thus gracefully indifferent to the number of targets: Once the amplitudes and the
locations of the corresponding dipoles are determined, one need only look at their
clustering patterns, compute the time-dependent total polarizability tensor for each group,
and subsequently diagonalize each such tensor using joint diagonalization. The resulting
diagonal elements have been found to be intrinsic to the objects they represent, and can
be used, on their own or combined with other quantities, in discrimination analysis.
Recent ESTCP live-site discrimination studies have clearly indicated the superior
discrimination performance of the ONVMS method in combination with the statistical
processing approaches described below.

One of the main challenges one faces when attempting multi-target inversion and
classification is the inability to estimate the number of targets. In order to overcome this
problem, we implemented a technique based on joint diagonalization that estimates the
number of targets present in the field of view of the sensor as it takes a data shot, in real
time and without requiring a forward model, and, in a good number of cases, even
provides the capability to perform a quick inversion-free characterization and
classification of these targets. JD determines the eigenvalues and eigenvectors of a square
time- or frequency-dependent multi-static response (MSR) matrix synthesized directly
from measured data. The number of nonzero eigenvalues of the matrix (i.e., those above a
noise threshold) is related to the number of elementary sources in the illuminated cell;
moreover, the time-decay patterns of these non-vanishing eigenvalues are intrinsic
properties of the targets to which the sources correspond and can ultimately provide
dependable classification features.

Overview of Chapter 2

Chapter 2 discusses inverse models: the methods used to harness the forward models so
they provide relevant intrinsic and extrinsic information starting from measured data.
After presenting some traditional gradient-search based methods and pointing out some
of their limitations we describe differential evolution (DE), a state-of-the-art global-
search method, similar in character to genetic algorithms, that has shown remarkable
flexibility and usefulness. We end by describing the HAP method, a semi-analytic non-
iterative procedure to locate buried targets.

Determining a buried object’s orientation and location is a non-linear problem. Inverse-
scattering problems are solved by determining an objective function, as a goodness-of-fit
measure between modeled and measured magnetic field data. Standard gradient search
approaches often suffer from a surfeit of local minima that sometimes result in incorrect
estimates for location and orientation. To avoid this problem we recently developed a
different class of global optimization search algorithms. One such technique is the
Differential Evolution (DE) method, a heuristic, parallel, direct-search method for
minimizing non-linear functions of continuous variables that is very easy to implement
and has good convergence properties. We combined DE with ONVMS to invert digital
geophysical EMI data. All EMI optimizations were split into linear and nonlinear parts,
iterating between them to minimize the objective function. Once the target locations are



found, the amplitudes of responding ONVMS are determined and used to classify the
object relative to items of interest.

In the EMI regime, the secondary magnetic fields measured by the EMI receivers are
induced by eddy currents magnetic dipoles which are distributed non-uniformly inside the
scatterer. There are some particular points, named “scattered field singularities” (SFS),
where most of these sources are concentrated. Recent studies show that under certain
conditions the entire scatterer can be replaced with several responding elementary sources
by putting them at SFS points. We have found a new analytic expression for estimating
the location, orientation, and polarizability elements of a buried object starting from
measured EMI data without solving traditional ill-posed inverse-scattering problems. The
algorithm (dubbed “HAP”) is based on the fact that a target’s response can be
approximated by dipole sources concentrated at SFS points. It utilizes three global values
at a single location in space: (1) the magnetic field vector H, (2) the vector potential A,

and (3) the scalar magnetic potential ¥ . Since among these quantities only the H field
(and sometimes only one of its components) is measurable, we employ a variation of the

NSMS model to obtain A and ¥ we distribute elementary sources on an auxiliary planar
layer, located between the sensor and the object, and find their amplitudes by fitting
measured data.

Overview of Chapter 3

Chapter 3 presents and describes the next-generation EMI sensors—the
METALMEPPER, the TEMTADS array, the MPV portable instrument, and the BUD
system—that took all the data we use and that represent the state of the UXO remediation
hardware. We present the results of several testing and validation studies carried out on
laboratory, test stand and US army standardized Aberdeen Proving Ground in Maryland
test-site data from these devices. Also Provides a detailed account of the discrimination
and classification studies performed on data from actual UXO sites—the Camp Sibert in
Alabama, Camp San Luis Obispo in California, and Camp Butner in North Carolina—in
which several combinations of the techniques presented in the previous chapters were
used. We describe our solution strategies and the results we obtained.
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Chapter 1. Forward models

1.1 Introduction

Cleaning up buried UXO has been identified as very high priority environmental and
military problem for many years. In many cases upon UXO impact into ground the
ordinances are broken in parts without explosions and are remaining very dangerous for
long time. Further, in many highly contaminated sites, multiple UXO together with
widespread clutter appear simultaneously within the field of view of the sensor and it is
extremely difficult to distinguish them reliably from typically widespread pieces of metal
clutter. Thus a current research goal is to isolate ways to discriminate objects of concern
from surrounding metallic clutter, once an item has been detected. Broadband (20 Hz ~
100 kHz) electromagnetic induction (EMI) sensors are promising tool for the detection
and discrimination of buried unexploded ordinance (UXOQO) [1-75]. The discrimination,
which in general is an inverse problem, requires very fast and accurate representation of
EMI response. This has driven the development of new analyses and analytical tools for
studying EMI scattering problems. The only well-established analytical solutions to date
for broadband EMI scattering are for the case of the sphere in both frequency and time
domain [76, 77] and cylinder of infinite length oriented transverse to the primary field
[78]. Recently progress has been reported for analytical solution of EMI scattering from
spheroids [18, 27, 36], including specialization to treat high frequency conditions, when
penetration of the object is slight [27, 36] (SPA, the small penetration approximation).
Some evaluation problems for the spheroidal shapes remain, in the mid-region of the EMI
band. Particularly for arbitrary 3-D geometries, one must usually resort to numerical
models to obtain results most relevant to the variety of target types that must be
considered. Targets of arbitrary shape have been attacked using the Method of Moments
(MoM) with an impedance boundary condition (IBC) [79]. More recently, bodies of
revolution (BOR) have been modeled using the MoM with full, rigorous boundary
conditions, requiring substantial computation times [15]. FEM —BEM approaches [28,
29] not reliant on the IBC were developed. In parallel with the above-mentioned
analytical work on spheroid solutions, a compact numerical formulation has been
produced for arbitrary shapes using the Thin Skin Approximation (TSA) [24], which only
applies the divergence equation for magnetic field inside the target. This performs very
well for the difficult realm of high frequency conditions, and for high permeability cases
has remarkably broadband applicability.

Finally, the electromagnetic sensing group at Thayer School of Engineering, Dartmouth
College has developed the Method of Auxiliary Sources (MAS [25]) for solution of the
full EMI problem for penetrable, highly conducting and permeable metallic targets. The
MAS is a numerical technique, originally designed for solving various electromagnetic
radiation and scattering problems [80-88]. It has been demonstrated that the MAS is a
robust, easy to implement, accurate and sufficient method for studying a wide range of
electromagnetic problems, such as investigation of waveguide structures, antennas,
scattering, electromagnetic wave propagation in complex media, etc. Later MAS



successfully was combined with SPA [36] and TSA [24] for analysis of low frequency
EMI scattering phenomena. In standard MAS for EMI [25], boundary value problems are
solved numerically by representing the electromagnetic fields in each domain of the
structure under investigation by a finite linear combination of analytical solutions of the
relevant field equations, corresponding to sources situated at some distance away from
the boundaries of each domain.

EMI scattering responses are often expressed relative to the induction
number y = \-2jzvou a, where j is the square root of minus one a (m) is a

characteristic dimension of the object (usually the smallest one), v = frequency (Hz),
L= u,u, - magnetic permeability and o (S/m) is the scatterer’s electrical conductivity.

The quantity y is proportional to a/3, where & is the skin depth. The main limitation of
MAS is its reduced accuracy and efficiency when dealing with the high frequency EMI
induction problem [25]. The reason is that at high induction numbers the electromagnetic
fields inside metallic objects produced by auxiliary magnetic dipoles placed on the
external auxiliary surface(s) decay over distances on the order of 3. Under a level of
numerical resolution fine enough to represent the object shape accurately, but no finer
than that, matrix elements become almost zero (within the accuracy of the computer. The
matrix becomes ill-conditioned and the solution unstable. To avoid this kind of difficulty
recently several types of approximations were developed, such as the Thin Skin (TS) and
small penetration (SP) approximations, which are related to impedance boundary
conditions. The accuracy and validity of the TSA in conjunction with the BEM have been
studied previously [24], in application to highly conducting and permeable (e.g. steel)
metallic objects with regular geometries, such as the sphere, ellipsoid, prolate and oblate
spheroid, subject to a uniform primary magnetic field. Under these constraints, it has
been shown that for a wide class of EMI scattering problems, the TSA is very accurate
and efficient over entire broadband EMI frequency range [24]. It is easy to implement for
an arbitrary geometry. At the same time, the BEM-TSA cannot treat low induction
number cases reliably, particularly for non-permeable materials. Recently, a hybrid MAS-
SPA algorithm was developed in [55]. It has been shown that MAS-SPA is very efficient
for analyzing EMI responses at high induction numbers for spheroidal objects. The
algorithm is using a factor f [55], which can readily be obtained only for the canonical
objects. However, it is very difficult to extend this algorithm for an arbitrary object. The
combined MAS/TSA algorithm was introduced and tested for highly permeable and
conducting regular shapes under highly variable primary (transmitted) field’s as well non-
regular geometries [74]. In this chapter a hybrid algorithm applying the standard MAS at
low frequency and the combined MAS/TSA at high frequency is proposed. The ultimate
goal is to use the full MAS formulation at low induction numbers, and to employ the
MAS/TSA formulation at high frequency to connect electromagnetic fields inside and
outside of the scatterer. In the combined MAS/TSA algorithm, the number of unknowns
is reduced by a factor of 3, in an arbitrary 3-D EMI problem, relative to the original full
MAS. Single frequency computations are approximately four times faster. For multi-
frequency cases, the matrices expressing magnetic fields produced by auxiliary magnetic
charges do not depend on frequency and can be stored for use, without recalculation, over
an extended band.



UXO discrimination is an inverse problem that demands a fast and accurate
representation of a target’s EMI response. Much of my research in this thesis has had to
do with the development, implementation, and testing of models that provide such
representations in a physically complete, noise-tolerant way that allows them to perform
adequately in realistic settings and to set the stage for dependable live-site UXO
discrimination. Electromagnetic induction (EMI) sensing, in both frequency and time
domains, is emerging as one of the most promising remote sensing technologies for
detection and discrimination of buried metallic objects, particularly unexploded
ordinance (UXO). UXO sites are highly contaminated with metallic clutter so that the
major problem is discrimination not detection. In order to overcome this problem, first
underline physics of EMI field scattering phenomena needs to be studied using numerical
methods. One of such computational fast and effective methods is the Method of
auxiliary sources.

In the MAS, boundary value problems are solved numerically by representing the
electromagnetic fields in each domain of the structure under investigation by a finite
linear combination of analytical solutions of the relevant field equations, corresponding
to sources situated at some distance away from the boundaries of each domain. The
“auxiliary sources” producing these analytical solutions are chosen to be elementary
dipoles/charges located on fictitious auxiliary surfaces that usually conform to the actual
surface(s) of the structure. In practice, at least as the method is realized here, we only
require points on the auxiliary and actual surfaces; thus we do not need to the detailed
mesh structures required by other methods such FEM [28, 29], and method of moments
[30].

The two auxiliary surfaces are set up inside and outside the scattering object. The fields
outside of the structure are considered to originate from a set of auxiliary magnetic
charges placed inside the object, while the fields inside the object are taken to arise from
a set of auxiliary magnetic dipoles placed outside. The interior and exterior fields thus
constructed are required to obey Maxwell’s boundary conditions—the continuity of the
tangential magnetic field components and the jump condition for the normal magnetic
field components—as evaluated at arrays of selected points on the physical surface(s) of
the structure. This results in a matrix equation in which the amplitudes of the auxiliary
sources are the unknowns to be determined. Once these amplitudes are found the solution
is complete: the electromagnetic field—as well as any quantity related to it—can easily
be computed throughout the computational space.

In general UXO discrimination is a non-linear inverse problem, which requires high
fidelity forward models [31-33]. The most frequently used method for representing the
EMI response of a metallic target in both frequency and time domains approximates the
whole object with a set of orthogonal co-located point dipoles that fire up in response to
the primary field; the induced dipole moment is related to the primary field through a
symmetric polarizability tensor. The use of this dipole approximation is motivated by its
speed and simplicity; this simplicity, however, rests on assumptions that often become
problematic and limit the model’s usefulness. One such assumption is that the buried
target of interest is either far enough from the transmitter loop, or small enough, that the



primary field is essentially uniform throughout its extent. Usually, complex targets
composed of different materials and different sections that contribute appreciably to the
response—and, in the case of UXO, containing such complicating features as fins and
rings—simply cannot be modeled accurately with a single point dipole. Such cases
require more advanced methods that will capture the underlying physics correctly. One
such technique is the NSMS model.

The NSMS method [2-5] can be considered as a generalized surface dipole model, and
indeed reduces to the point dipole model in a special limiting case. The NSMS approach
models an object’s response to the primary field of a sensor by distributing a set of
equivalent elementary magnetic sources—normally oriented dipoles in this case—over an
auxiliary surface that surrounds it. Such a surface distribution can be hypothetically
generated by spreading positive magnetic charge over the outer side of the equivalent
surface (usually a prolate spheroid) and an identical distribution of opposite sign on its
inner side [3], resulting in a double layer of magnetic charge separated by an infinitesimal
distance. This double layer introduces the proper discontinuities in the tangential
components of the magnetic flux density vector B but does not affect the transition of its
normal component, which must always be continuous given the lack of free magnetic
charges in nature. The resulting magnetic-moment distribution radiates a field that by
construction satisfies the governing EMI equations and can thus account for the
secondary field outside the object. The particulars of location and orientation are divided
out by normalizing the dipole density at every point with the component of the primary
magnetic field normal to the surface. The resulting surface amplitude € of the NSMS
distribution is a property of the object, and its integral Q over the surface constitutes a

sort of global magnetic polarizability that is independent of the computational
constructs—primary field, surrounding surface, object location and orientation, etc.—
introduced for its determination. The surface amplitude can be determined directly for
library-matching purposes by minimizing the difference between measured and modeled
data for a known combination of object and sensor at a given relative location and
orientation.

The NSMS technique has demonstrated good computational speed and superior
classification performance when applied to EMI datasets consisting of well-isolated
single targets, but is found to degrade quickly on both counts when confronted with
multi-target cases. This has forced us to generalize the model further and develop the
ONVMS procedure.

The ONVMS model [3], a further extension of NSMS, is based on the assumption that a
collection of subsurface objects can be replaced with a set of magnetic dipole sources,
distributed over a volume. Since all actual radiating sources are located within the
scatterers—rather than in the soil or air—the spatial distribution of these fictitious dipoles
(their amplitudes scaled by the primary field) indicates the locations and orientations of
any targets present inside the computational volume. The great advantage of the ONVMS
technique over the other models discussed above is that it takes into account mutual
couplings between different sections of the different targets while simultaneously
avoiding the appearance of singular matrices in multi-target situations. It is thus



gracefully indifferent to the number of targets: Once the amplitudes and the locations of
the corresponding dipoles are determined, one need only look at their clustering patterns,
compute the time-dependent total polarizability tensor for each group, and subsequently
diagonalize each such tensor using joint diagonalization. The resulting diagonal elements
have been found to be intrinsic to the objects they represent, and can be used, on their
own or combined with other quantities, in discrimination analysis. Recent ESTCP live-
site discrimination studies have clearly indicated the superior discrimination performance
(illustrated in chapter 5) of the ONVMS method in combination with the statistical
processing approaches described in Chapter 2.

One of the main challenges one faces when attempting multi-target inversion and
classification is the inability to estimate the number of targets. In order to overcome this
problem, we implemented a technique based on joint diagonalization [35] that estimates
the number of targets present in the field of view of the sensor as it takes a data shot, in
real time and without requiring a forward model, and, in a good number of cases, even
provides the capability to perform a quick inversion-free characterization and
classification of these targets. JD determines the eigenvalues and eigenvectors of a square
time- or frequency-dependent multi-static response (MSR) matrix synthesized directly
from measured data. The number of nonzero eigenvalues of the matrix (i.e., those above a
noise threshold) is related to the number of elementary sources in the illuminated cell;
moreover, the time-decay patterns of these non-vanishing eigenvalues are intrinsic
properties of the targets to which the sources correspond and can ultimately provide
dependable classification features.

1.2  Magneto-quasistatic assumption

All solutions in this chapter are based in part on two reasonable assumptions. The first is
that, throughout the entire UWB EMI frequency band, electromagnetic phenomena are
magneto-quasistatic. While this may be taken as something of a foregone conclusion in
low frequency EMI, we examine the assumption explicitly here because recent
developments have raised the upper frequency limits for EMI practice to about 300 kHz.
This makes the magneto-quasistatic assumption more suspects.

Consider a highly conducting and permeable metallic scattering object, with relative
permeability p, and conductivity o [S/m] is embedded in a uniform background. The

time dependence expression of €is suppressed subsequently. In the EMI problem
considered here, the frequency range is from 0 Hz up to 300 kHz. The governing
equations that form the basis for any pertinent analysis of EMI scattering physics are
Maxwell's equations. In both static and transient fields, Maxwell's magnetic field
divergence equation must be satisfied.

V-H=0

Where this form of the equation assumes spatially uniform p. In practice here we will
assume that u may vary between different portions of an object of interest, but that it is
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constant within any given section or sub-region. Thus (1) applies within every (sub)
region, except on boundaries, where we apply a boundary condition instead.

The particular equations in Maxwell's complete set that pertain most directly to induction
are Faraday's and Ampere’s Laws,

VxE=-juoH
VxH=cE+ jenE
where E is the electric filed (V/m) and H is magnetic field (A/m). The quantity
joeE :% is called the displacement current, where ¢ is the permittivity of the medium

(farad/m). Note that, even in the frequency domain, ¢as used here does not include any
portion resulting from the electrical conductivity of the medium, o, the effects of which
will always be expressed separately. The term oE represents actual electric currents in the
medium. We wish to examine the magnitudes of these terms, relative to each other and
also relative to the various derivatives on the left side of the equation. We will do this by
tracing the influence of each of the terms on the right hand side within an equation
entirely in H, obtained by combining (3) with other of Maxwell’s equations. Taking the
curl of (3) and performing manipulations yields

V’H = joopH -w’epH

The first and second terms on the right in (4) descend from the first and second terms on
the right in (3), respectively. Specifically, the relative magnitude of the first (second)
term on the right hand side of (3)corresponds to the relative magnitude of the first
(second) term on the right hand side of,(4) and we will analyze the latter. The three
parameter regions where this equation will be examined are those for air (free space), the
soil, and the metallic scatterers.

The situation is different in each of the three parameter regions. In the air we assume that
o is approximately zero, so that the second term in (4) drops out. This leaves a classical
wave equation with wavenumber k defined as

k = 2n = w\/a
A
Where A is the wavelength. Higher frequencies produce shorter wavelengths. At the top
of the MF-EMI band (300 kHz), this expression indicates that the electromagnetic
wavelength is one kilometer. Typical distances over which we are concerned about
electromagnetic interactions are on the order of 1 m. Thus there is negligible phase
difference between different points within the domain of consideration in the air. Fields
change essentially in unison throughout, with the structure of static fields, gaining time
dependence only through the action of sources and boundary conditions. This results in

the uniform time factore!, and a quasi-static phenomenology. The The ultimate
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significance of this in connection with the equations above is that both terms on the right
hand side of (4) are negligible, as both are FD expressions for time derivatives. Thus the
corresponding terms in (3) are also negligible, and the H field is irrational (VxH =0). An
irrotational field may be represented as the gradient of a scalar potential, y (A/m?).

H=-Vy

Substituting (6) in (1) produces the governing equation for the air region.
Viy =0

Representing of the magnetic field by the scalar potential v, instead of a vector potential,
has two main advantages: first the calculation of Greens function related to the Laplace
equation (7) is very simple and fast, and second the scattered magnetic field can be
represented as summation of the fields produced by a set of magnetic charges. This
reduces number of unknowns at least a factor of 2 relative to the vector potential
representation. Within the soil, o is nonzero and the ratio of the magnitude of the third to
the second term in (4) is welo. As a “worst” case, i.e. the one that most threatens the
MQS assumption, we assume @ ~10° rad/s, o ~102 S/m, and & ~ 10° F/m. This
combination of parameters means that we would be operating at the extreme upper limit
of the MF-EMI band and presupposes a particularly unlucky set of soil properties, with
low conductivity but rather high dielectric constant. Even this combination of parameters
implies that the third (displacement current) term is not larger than the second (electric
current) term. To estimate the significance of the electric currents in the soil, compare
their magnitude to those induced in the metallic target. By general continuity conditions,
the electric field E will be on the same order in the soil immediately surrounding the
target and in the parts of the metal where the most significant currents are flowing. As the
currents are equal to of, the ratio of currents in metal and soil will be approximately
equal to the ratio of their conductivities. A reasonable upper bound on soil conductivity is
o~ 102 S/m. A typical metal of interest has o~ 107 S/m. Thus the currents in the metal
are about nine orders of magnitude stronger than those in the soil. Unless the metal
scatterer is extremely small and simultaneously the sensor samples an enormously larger
volume of soil (not the case here), the fields in the soil will be dominated by those
produced by currents in the metal. That is, the electric currents in the soil will not be a
significant factor in determining the fields in the soil. Thus we conclude that the term
containing the soil currents may be dropped (first term on the right in(4)). We have
already concluded that the second term is not more significant than the first; therefore the
entire right hand side of (4) is again negligible. Thus, in the soil as in the air, we conclude
that the magnetic fields are irrotational and can be represented using a scalar potential, i.e
with the governing equation(7).

Within the metal, we again examine the quantity we/o. Using the typical values cited
above we immediately conclude that the displacement current term is negligible
compared to the electric current term. However, the electric currents within the metal are
by no means negligible; rather, they are a fundamental source of the scattered signals.
Thus two terms remain in(4), which may be construed as a Helmholtz equation

(6)
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V’H+k’H = 0, k=y/-joou

where k is sometimes referred to as a wavenumber, by analogy with higher frequency
solutions to the equation. However note that (8) is not a wave equation, as the second
term -joouH is the frequency domain equivalent of oy times the first derivative H with
respect to time, not the second derivative. We can create “traveling wiggles” within the
metal by imposing sinusoidal behavior on its surface. However these are not true waves,
e.g. they do not reflect. As in the wave case, fundamental solutions of (8) can be
expressed as

jkR /
HDe k= y+iy; vy = mc“,R:r—r'
R V2
Because the real and imaginary parts of k are equal, the spatially oscillating factor
e!*® decays by 1/e in less than one sixth of its spatial period.

1.3 The method of auxiliary sources

In the EMI frequency regime the EM field penetrate inside the object. Internal and
external fields at the surface of the object must satisfy the continuity of tangential
components of H and normal component of B

Ax(H;+H") = AxH,
A-(HE+HY) = A-pH,
Here fis a unit normal vector on the real surface [89,104] H™ is the primary magnetic

field, H;° is the scattered magnetic field radiated by the auxiliary magnetic charges,

which we consider to be distributed over the inner auxiliary surface [25]; H, is the total
magnetic field inside the object, produced by the auxiliary magnetic sources placed on
the outer auxiliary surface. Using conventional MAS [25] the boundary conditions (10)
and (11) can be written in the following compact matrix form:

6t wGl wer Q] [
G® G GNP | = -|H
S (T

where Q is a vector containing the amplitude of auxiliary magnetic charges, Pk, k=u,v is a
vector containing the amplitude of auxiliary magnetic dipoles oriented along u and v,

which are orthogonal directions on an auxiliary surface, Gg is exterior field expressed
with Green’s function 1/(4nR) where R=|r-r| and G" is the interior solution expressed
ultimately in terms dipole sources distributed over an exterior auxiliary surface, together
with a Green function of the form eij/4nR . More explicit form of the

(8)

9)

(10)

(11)

(12)



G¢, and G;" matrices, where&=n, 0, U;y=u,v, is presented in [25]. When the skin
depth becomes small so that both real and imaginary parts of k become high, the
ng matrix’s elements become very small compared to Gg matrix elements. At relatively
high frequency (more that 10 kHz for common steel, copper, aluminum, brass etc), the
sz matrix elements decay very rapidly in space and linear system (12) becomes
unstable.

1.4 Combination of MAS with TSA

To avoid this problem it is desirable to establish an alternative formulation that would be
applicable for high frequencies. It is well known that at high induction numbers the
internal field is non-zero only in a thin layer close the surface (Fig 1). Under this
condition, divergence free Maxwell’s equation applies just below surface [24, 74]. That
equation and the thinness of the surface

Layer can be exploited to provide a boundary condition on the external field, obviating
the necessity for complete solution of the internal field. We will proceed in a manner
analogous to that in [24, 74], where linear interpolation of unknowns is used over
piecewise flat surface elements, in a Galerkin integral treatment of the governing relation.
Here consider a general curvilinear surface, with completely continuous tangents and
normals, and a subdomain integration of the governing equation. Gauss’s Law (the
magnetic field divergence equation) is integrated over a thin finite volume just below the
object’s surface, to produce the relation

V-H,=0 0 [fjH,-dA=0

A

or
H2,n2 'Anz _H2,n1 'An1+ H2,u2 'Auz -Hz,ul 'Aul
+H,, ‘A, -H,, ‘A, =0

Where A=A +A +A, +A, +A, +A, |satotal area of the thin volume Let us
divide (14) equation by the layer thickness d and take limit as d — 0, obtaining

oH
\ 2’”+H2n—aA”+H
on ©on

+H2,v2 va _H2,v1 I-vl =0

A L L

uz-Hz,u1 u (15)

2,u,

Here on =ad . The basic tenet of the TSA is that fields just below the surface within the
thin layer vary approximately one-dimensionally, normal to the surface. Thus, asd -> 0

g ... oH
the normal component of the magnetic field Honand I t ’s derivative a—“ along normal
n

A are related to each other through:

(13)

(14)



oH, ,
on
Where H, (0,u,v) is the value as n->0 on the interior of the surface. Using boundary

conditions (10) and (11) together with the TSA condition (16), equation (15) can be
rewritten for external magnetic field on boundary in following form:

= jkH,,(0,u,v) (16)
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Figure 1.1: Geometry of volume just below the real surface A
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Or , in compact matrix form:

[Z][Q] = -[Y] (18)
Where
[Z]=[GS i(jkAn +6A”j+GS L, -GIL, i|+
; an 2 2 1 1 (19)
[G‘fz L, -GS LVJ
And

[v] {H;" =, + 2 H+
K, an (20)
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To apply MAS to the exterior region, a set of magnetic charges is placed mathematically
inside the physical surface, on the auxiliary surface S:** Figure 1.2. The secondary
magnetic

Physical surface

Free space o, Lo

Figure 1.2: Combined MAS-TSA

field due to the target is expressed as a superposition of the fields generated from a finite
number (N) of point charges, {Q;}, i=12,3,...,N placed on the surface S;***. The total

secondary magnetic field at the position T, due to the auxiliary charges is expressed as
Eq. 21 in [25]. By applying equation (17) at M collocation point on S and expressing H
using the {Qi}, we cast into an NxM linear system of equations, where normally we set
M = N.

The significance of all this is that TSA together with standard boundary conditions across
the boundary allows us to write the entire problem in terms of exterior field
quantities(17). These in turn can be solved for in terms of a simple set of scalar auxiliary
source strengths, distributed relatively sparsely over an auxiliary surface. We term this
combination the combined MAS-TSA algorithm, because it retains an MAS formulation
for the exterior field, but treats the interior field only through the TSA. The "full MAS"
designates an MAS formulation applied to both interior and exterior regions. One can
also mix MAS and TSA in another sense, namely applying the full MAS where it is
appropriate, and easily switching to the combined MAS/TSA where it is appropriate. This
is fact provides a full EMI band simulator.

1.5 The single-dipole approximation

According to the Huygens Equivalence Principle, an object’s entire response to a given
excitation can be approximated as the summation of magnetic fields produced by



elementary magnetic dipoles/charges placed on a closed surface surrounding the target.
Using the superposition principle, this set of dipoles can be approximated as one
independent aggregate dipole. In the simple dipole model, the secondary magnetic field at
r due to a dipole of moment m is:

H= 1 3
4R

Il
0]l

-m

(BRR-T)-m

where R is the unit vector along R=r"—r,, r, is the dipole’s position, and T is the
identity dyad (see Error! Reference source not found.). The dipole moment m induced

by the primary magnetic field H” is given by

m:I\:/I-H’”(r’,r),

where M, the target’s magnetic polarizability tensor, is a symmetric matrix:
M,=M_, afB=XY.z, This tensor depends on the scatterer’s shape, size, and material

properties. In a coordinate system aligned with the scatterer’s principal axes for different
primary magnetic fields H (r,r,), (22) can be written in matrix form as

[m]- ],

Sensor Observation point

| A

Figure 1.3: A dipole’s location in a global coordinate system

Thus the secondary magnetic field is

H=G-M.[H" ]=[T1[M],

(21)

(22)

(23)

(24)



Where [M] is a 1 x 6 dimensional vector whose components (Mxx, Mxy, Mxz, Myy, My,

M) correspond to the elements of the target’s magnetic polarizability tensor M and [Y]
Is a 3 x 6 matrix,

_ 1 (Y, Y, Yy Y, Y, Yl
Y=m Yy, Y, Yy Y, Y Yy |s (25)
Yy Yy, Yy Yy Yy Yo

whose elements are as follows:

Y =HI@R-R") Y, =3R (RHI+RHI}-HIR® Y, =3R (RHI+RH)-H'R

Y, =3R R H” T =3R (R,HY +R H) Yy =3R,R,HY"

Y, =3R R H” Y, =3R, (RX HY +R, Hfr} HI'R* Y, = 3R, (RX HY+R HY

Y, =H"(BRZ-R?) Y, =3R (RH"+RH")-HIR® Y, =3RRH]

T, =3R, RHY T, =3R, (RxH;)r—i_RyH:r Y33:3Rz (RX Hf’+RZHfr)_Her2
TLSRRHY <3 RHT R D) IR T, =GR R)
Once the vector M is determined the magnetic polarizability tensor M is constructed as

(
-

XX

Xy

= Z LZ

M Xy M xz
M, M, | (26)
MM
xz yz z

and finally the M tensor’s principal polarizability elements are determined in the target
frame coordinate system, which is related to the global coordinate system via the Euler

rotation tensor A(y,6,4), as

)

[, 0 0
A 0 |AT.(27)
B
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Body-of-revolution (BOR) symmetry (which most UXO possess) dictates that g, =5,
and that the third Euler angle w is zero. We thus obtain



B cosdcos¢ cosdsing —sind
A=| —sing CoS ¢ 0
sindcos¢g sindsing cosé

where @ and ¢ are the angles between the local and global axes. Note that the tensor M

depends on time or frequency while the Euler tensor does not. This suggests that one
could apply joint diagonalization to separate the polarizability eigenvalues from the
rotational eigenvectors; the attitude angles can in turn be extracted from the latter.

1.6 NSMS Method
1.6.1 Theoretical basis of NSMS

The NSMS model is based upon the assumption that the entire scatterer can be replaced
with an auxiliary very thin surface shell. The primary magnetic field strikes the shell and
induces on it a surface magnetization, in terms of which the secondary scalar potential
can be written as [5]

1 1
(r)=—[. M(r")-vV'=ds’
v(n)=—[fLM0r)-V'=

Here R=r—r’, where r is the observation point and r’ is on the surface S, and M(r’) is a
surface density of magnetization, which can be defined as the induced magnetic moment

per unit surface: m= Eﬁs M(r')ds’ . The surface density M of magnetic polarization may be

resolved at every point on S into normal and tangential components by means of the
identity

M = (A- M)A + (A x M) x A

and combining (30), (29) and Error! Reference source not found. we get for the total
scattered magnetic field

sc _ 1 AT N\A' 71 '
H (r)——EVUl(n M)A’V ds
1 1

——V[I1 (A" xM(r"))xA'V'=ds'.
- VILE M) -

The first integral in (31) may be interpreted as a scalar potential due to a double layer of
moment

() = (- M =0, (M)A

and the second may be interpreted as a scalar potential due to a “free” magnetic charge
distribution proportional to a discontinuity in the normal components of magnetic flux.

(28)

(29)

(30)

(1)

(32)



Since the normal component of the magnetic field is always continuous across a
boundary between two media, the total scattered magnetic field can thus be written as

H*(r)=-V[f o, (r)g(r,r") ds
where

1
[r=r'f.

1
rry=—~n".v’
9(rr)=_—

Thus the EMI response of a permeable and conducting metallic object can be represented
using a surface density oi,(s’). At every point, the magnetic flux density B is

B=u,(H+M)

Using Gauss’s law for the magnetic flux density in the volume enclosed by S and using
the divergence theorem we obtain

[, V-Bdv=p[f| (H-A"+M-A)ds
= 1,[JL(H, (1) + o, (r))ds’ =0,

and it follows that the magnetization density at a given point on the surface equals

0,(8)=—H, () = ~(H (5)+ H(s)
=—HZ(s) (L+ P(s))
where P(s”) is in general position-dependent on S surface. In other words, the surface

magnetic charge is proportional to the normal component H™(s") of the primary
magnetic field. This motivates us to introduce a normalized surface distribution Q(s”)

through
0, (8)=-Q(s) [H”(s)-nT

which would result from exciting each patch of the surface S with a nonphysical unit
primary magnetic field in the normal direction. After combining (33) and (38), the total
scattered magnetic field can be expressed as

H*(r) = Dl Q(r")[H” (r")-ATVg(r,r’)ds’

3R(R-A") - R*A
ArR®

= [ﬁsQ(r’) [HP (r')-A'] ds’,

In the following we will argue that 2, and in particular its integral over the surface,

(33)

(34)
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Q:Dles’

contains all the information about an object that could be of need in the UXO
discrimination problem, incorporating the effects of heterogeneity, interaction with other
objects, and near- and far-field effects. We note that Q has dimensions of volume, which
makes it comparable to the polarizability tensor elements of the point dipole model [6-
13].

1.6.2 Formulation for bodies of revolution; determining NSMS amplitudes from
data

Most UXO are bodies of revolution (BOR), and the simplicity and efficiency afforded by
this simplification motivates specializing the above analysis to scatterers with BOR
symmetry. The best choice for auxiliary surface is a prolate spheroid, since it has BOR
symmetry but at the same time has the elongated shape of UXO and can be made to have
a definite orientation. We take a spheroid of semiminor and semimajor axes a and b =ea
with e > 1. In the prolate spheroidal coordinate system (&, 7, @) we can write (39) in the
form (see Figure 4)

He(r) = [ h,dn’ [, de’ Q07" &,.¢) [H” () -1 Vg (r.r)

where the prolate spheroidal coordinates obey -1<7<1, 0<&<w, 0<@<2r, r is the
observation point, h; and h,, are the metric coefficients

d |&-7n d\/T
h,=> o " and h, = 5@ 7)X& -1

1-7n
the spheroid is characterized by & =e/+e® -1, and d=2vb”*-a* is the focal distance.

For a body with BOR symmetry the NSMS amplitude is azimuthally constant, and
moreover the variation of the induced magnetic charge density o is accounted for by the
normal component of the primary magnetic field. This implies that Q(7',&,¢") =Q(77').

For convenience we define

H=(r) = [ QK (7. ndif
where
KGr'r) = [ TH™ (r)-£19(r. &7, 9)0, h, do

and assume that the NSMS can be approximated by a series of expansion functions
F_(#') such that

(40)

(41)

(42)

(43)

(44)



Q)= F (1)
m-1 (45)

Observation point

Figure 4: The NSMC that are distributed on a prolate spheroidal
surface is implemented for a body of revolution. The prolate

spheroidal coordinate system is specified by (& 7, ¢).

For computational simplicity, in the subsequent analysis we assume the expansion
functions Fm(7) are a set of orthogonal pulse functions given by

1, neAn,
F.(7)= _
0, otherwise.

(46)
The expansion in terms of pulse functions is a “stairstep” approximation to the NSMS
distribution on the spheroid along 7/, where the spheroidal surface is divided into M belts.

The expansion coefficient Qn thus corresponds to the NSMS amplitude at the m-th belt.
Substituting into (43) we obtain

H=(1) = [ Y20, F, (1K (7 ndy
=t , (47)



and the use of (46) in (47) enables us to write

M M
H*(N=>Q | K(zrdn=>Q f(,.r)
m=1 Aty m=1
=Qf(n,r)+Qf(n,r)+--+Q, f(n,.r).

The physical interpretation of this equation is as follows. The spheroid has been divided
up to M belts, each of surface As =2zh'h7A7 ., as shown in Figure 4, with the NSMS

being an unknown constant over each belt. At the center of each segment, the sum of the
scattered fields from all M belts is set to equal the measured field H%%(r) at point r that is
a known field arising from the scatterer. For a point rn the latter equation leads to

M
Zme(Um ! r-n) = Hdata(rn)

m=1

So far we have only generated one equation (or three if we have access to the full vector
field) with M unknowns. We can obtain additional independent equations by using data
collected at different points r, with n=1, 2, ..., N. Matching the modeled scattered
magnetic field to the data at these N points results in the linear system

[Z, 119, 1=[H"(r)] ,
with

fon,n) fn) - fmy.n)

[Z. 1= f(m.r,) f(m,,1,) f(UM:’rz)

f(771'rN) f(nzer) f(UM:rN)
[Q,1=[2 Q, ...,

[Hdata (rn )] — |:Hdata (rl) Hdata (rz) Hdata (rN )]

;
and f(7m, rn) given by (48), whose solution can be written symbolically as

_[ZTH* ()]

Q
3,1 [z,1'[Z,]

Once [Qm] is determined the object’s EMI response can be computed readily. The
resulting discrete NSMS distribution can then be used to compute the total NSMS

amplitude, which is a global measure of Q for the entire object and can be used for
discrimination:

M
Q = ZQmASm
m=1 .

(48)

(49)

(50)

(51)

(52)

(33)



In the following sections we study some features of this global measure of response.
1.6.3 The dipole model as a limiting case of NSMS

Here we show that NSMS reduces in the limit to the point dipole model [6-11] of
Section 1.5. Recall that the magnetic field due to a dipole of moment m is

1

m-(BRR -1
47R® ( )

H*(r)=

where R is the unit vector along R = r —rg and rq and r are respectively the location of

the dipole and the observation point, as seen in Figure 5, while T is the identity dyad.
The relation between the induced dipole moment m and the primary magnetic field H" at
the dipole location is given by

m= M.Hpr(rd)y
where the magnetic polarizability tensor M depends on the scatterer’s shape, size, and

material properties. For a body of revolution, the polarizability tensor in a coordinate
system aligned with the scatterer’s principal axes can be written as

s, 0 0
M= 0 g, 0
0 0 g,

where the degeneracy in the “radial” element [y, displays the BOR symmetry explicitly.
The target’s principal axes and the global coordinate system are related by the Euler
rotation tensor.

Now let us prove that in the dipole model is a limited case of the NSMS. To do that, first
let us divide the surrounding spheroidal surface into three belts and assume that on the m-
th belt the NSMS density follows a Dirac delta distribution (see Figure 5). With these
assumptions the scattered magnetic field (54) becomes

3 =
HE (1) == 2o O HE (1) (R R, 1)

m=1
where now R = r — ry points from r,, on the m-th belt to the observation point. AsS — 0
we have that rm—rg, and H”(r )=H"(r,), and because Nn,=p=aX+a,y, and

N, =-N,=2, (a,=cosa and «,=sina, where « is the angle between p and X) then
(57) reduces to

(54)

(55)

(56)

(57)



3RR-1 s : o m .
3 (2 H(r)2+Q,(HY (r)) ey X + H' (1), Y))
4zR (58)

H*(r) =

in terms of the Cartesian unit vectors %, ¥, and 2. After introducing a diagonal tensor

Q 0 0
M =0 Q 0
0 0 20

' (59)
and the vector m_= I\:/In -H"(r,), (58) can be written as

1
47R®

1 = v BB T
= Mo HP ()] GRR -T), 0

H*(r) = m_ - (3RR-T)

which proves that in the limit the NSMS model is identical to the infinitesimal dipole
approximation.
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Figure 5: A schematic diagram for a dipole model.

1.6.4 Interpretation of the total NSMS

The total NSMS (and its time evolution) depends on the size, geometry, and material
composition of the object in question. Early time gates bring out the high-frequency
response to the shutdown of the exciting field; the induced eddy currents in this range are
superficial, and a large NSMS amplitude at early times correlates with large objects
whose surface stretches wide. At late times, where the eddy currents have diffused
completely into the object and low-frequency harmonics dominate, the EMI response
relates to the metal content (i.e., the volume) of the target. Thus a smaller but compact
object has a relatively weak early response that dies down slowly, while a large but thin
or hollow object has a strong initial response that decays quickly. These features can be
neatly summarized by the parameters of an empirical decay-law model like the Pasion-
Oldenburg law see (64).



1.6.5 The parameterized NSMS

During APG standardized test-site discrimination studies (see Chapter 3.4) we use a
parameterized version of NSMS to encapsulate the electromagnetic signature of a target
[14]. In this version of the model—which provides at least three independent
polarizability-like parameters for use in discrimination and thus in a sense extracts further
information from the same data—the scatterer is associated with a surrounding sphere S
on which a set of dipoles are distributed. The secondary field is expressed as

5 B QXX(rS"t) Qxy(rs”t) sz(rs”t) Hfr(rs')
sc SRS’RS’_l pr =7
H (r,t):ul TS Q) Q) QD [ HYT() |ds'=2-Q,

s sz(rs"t) sz(rs,,t) sz(rs,,t) Hfr(rs,)
where R_ points from the location r, of the s'-th patch on the sphere to the observation
point r and the response amplitude of each patch is a combination of the primary field
piercing it and the tensor of normalized strengths ©,(r,,t), which, as usual [15], is
symmetric: @, =Q, . The z-axis is dictated by the direction of m from HAP or from the

dipole model, and the x - and y -axes are arbitrarily chosen to be perpendicular to 2 and

to each other. The integral is again transformed to a matrix-vector product through
numerical quadrature. The amplitude array Q is determined by minimizing in a least-
squares sense the difference between measured data with a known object-sensor
configuration and the predictions of equation (61). Once the tensor elements , (s’) are

found one can define “total polarizabilities” by integrating over the sphere,

Q, ()= D]SQU (r,.t)ds',

and these can in turn be used to find “principal elements” through joint diagonalization:

Q. QM Q.M QM 0 0
QM QM Q.M [=A| 0 Q® 0 |A
Q) QM Q. 0 0 QW

where the matrix A is orthogonal and the prime denotes transposition. The information
contained in the diagonal tensor can be summarized further by incorporating the
empirical decay law of Pasion and Oldenburg [16]:

M _(1)=Q (t)=B, t «e”’«, a=x,y,z,

where t is the time, B , B,,,and y,, are the fitting parameters, and M, (t) is the total

NSMS along the X, y, and z directions in the body frame. The principal NSMS elements
and the Pasion-Oldenburg parameters are intrinsic to the object and can be used, on their
own or in combination with other quantities, in discrimination processing.

(61)

(62)

(63)

(64)



1.7  The orthonormalized volume magnetic source model

Most EMI sensors are composed of separate transmitting and receiving coils. When the
operator activates the sensor, a current runs through the transmitter coils, which results in
the establishment of a (“primary” or “principal”’) magnetic field in the surrounding space
(Figure 1.2). According to the elementary atomic model of matter, all materials are
composed of atoms, each with a positively charged nucleus and a number of orbiting
negatively charged electrons. The orbiting electrons cause circulating currents and form
microscopic magnetic dipoles. In the absence of an external magnetic field the magnetic
dipoles of atoms of most materials have random orientations, resulting in no magnetic
moment. The application of an external time varying magnetic field, by Faraday’s law,
induces eddy currents in highly conducting bodies by an alignment of the magnetic
moments of the spinning electrons and a magnetic moment due to a change in the orbital
motion of electrons. These currents and magnetization in turn generate a (“secondary” or
“scattered”) magnetic field that also varies with time and induces measurable currents in
the receiving coils. The induced magnetic dipoles/eddy currents are distributed inside the
object and produce a magnetic field intensity H outside. The magnetic field due to the i-
th source can then be expressed at any observation point r as the matrix-vector product

H.(r)=G,(r)m,

Where the Green function G, is given in detail in equation (21). When there are several
such sources, the total field can be expressed as a superposition:

m

H(r)=§1“Gi(r)mi=[Gl G, J m

1

2

Before going further we note that our method takes as input the (in principle unknown)
number M of radiating sources. For advanced EMI sensors such as the MetalMapper
and 2x 2 and 5 x5 TEMTADS arrays we have developed a procedure based on joint
diagonalization, sketched in Section 1.10, that estimates M starting from raw data and
with no need for inversion. For other sensors one may proceed by letting M vary as part
of an optimization routine.

(65)

(66)



Figure 1.6: A metallic object under the transmitter. The target’s
EMI response at the receiver coil can be calculated from the

equivalent surface or volume magnetic dipole moment dm.

The superposition (66) can be used (and often has) to carry out one- and multi-object
inversions starting from data taken at an ensemble of points. All the measured H -
values—which can pertain to multiple transmitters, multiple receivers, and different
vector components—are strung together in a one-dimensional array, while the
corresponding Green functions are stacked as matrix rows. The resulting composite G
matrix can then be (pseudo)inverted to find the strengths of the sources. This procedure,
which is nothing other than the dipole model if each body is taken to be represented by
one source only, works well for one or two sources, but for larger numbers becomes very
time-consuming (since the Green matrix becomes very large) and increasingly ill-posed,
usually requiring regularization. The ONVMS method is designed to circumvent these
difficulties.

1.8 Orthonormal Green functions

The method starts from the realization that the matrix-vector product (65) is valid at any
observation point r and, in particular, at every point r_. If we introduce the inner product

(AB)=| A'Bds=[ A'Bds+[ A'Bds+.,

where the integral is computed over the “sensitive” surfaces of the sensor, and if
furthermore we can find a basis of Green functions orthogonal under this measure,

M
H(r,)=> ¥ (r,)b, such that <\I’j,‘Pk>=Fj5

j=1

ik

(67)

(68)



where 5, is a Kronecker delta, then it is possible to find the source amplitudes b,

without costly and ill-conditioned inversions simply by exploiting the sifting property of
the orthogonal basis:

M

M
(\yk,H):Z(qfk,qrj>b, ->Fs.b =Fb, (69)
j=1

i ki
and thus

b, = F (¥, . H),

which clearly does not involve solving a linear system of equations; it is necessary to
invert only the 6 x 6 matrix F_. Moreover, this definition of the coefficients b,

guarantees that they are “optimal” in the sense that the expansion (68) yields the least
mean-square error (H-3.% b ,H-x" ¥ b ) [90, 100].

To construct the set of orthonormal Green functions we resort to a generalization of the
Gram-Schmidt procedure [91]. Assuming that the Green matrices are linearly
independent—i.e., that we cannot have a collection of distinctly located dipole sources
combining to produce no measurable field unless their amplitudes all vanish—we define

Y =G,
¥, = Gz - A,

= (71)
where the 6 x 6 matrices A obey A =0 forj<k. Enforcing the orthogonality relation
J J

(68) is equivalent to setting (w ,G }=F A forn<m, and using this relation twice in
definition (71) we find

mn nk " k" mk

B _1( _n—l T \
A, =F LC”“ éA FAJ,

where the overlap integral ¢ ={G_,G,}.

m’ n/

At the end of the process it is necessary to recover an expansion expressed, like (65), in
terms of the actual Green functions, in part because the functions ¥ are orthogonal (and

(70)

(72)



defined) only at points on the receivers, and in part because of the non-uniqueness of the
coefficients b, due to the arbitrary order in which the G, enter the recursion (71). To

that end, we express

m

\Pm = ZGk Bmk !
k=1
and to find the coefficients B, we compare expansion (73) term by term to the definition
(71) and use the rule that A, =0 for j<k to find
B,, =1, theidentity,

mi

B =-A

m(m-1) m(m-1)’

m-1
B,, =—2.B,A, for 1<q<m-2,

I=q

in terms of which we recover the physical polarizability elements:

H= i\}’kbk =i[iG.Bk.} bk = iGI (i Bklbk} = iGlml :

=1

1.9 ONVMS procedure

With all the pieces in place, we can sketch an algorithm to invert EMI data using the
ONVMS model:

1) Given a number of sources and their tentative locations, find the Green tensors G, =T
using equation (25) and compute the overlap integrals G_ using the inner product(67)

\, and use it to find all the Gram-

2) Determine the first normalization factor, F =(G,,G,),

Schmidt coefficients A with n=1: A =F"C .
3) Set m=2; compute, in sequence,
a) The coefficients A with n=2,...,m—1 using equation (72);
b) The function ¥ _ using the expansion (71);
¢) The normalization factor F =(¥ ¥ );

Increase m by 1 and iterate until all sources have been included.

(73)

(74)

(75)



1) Once all the A

mn !

F,.,and ¥ _areknown, find B using (74).

2) Use the orthonormality of the new Green functions to determine the source
amplitudes using bq:Fq‘1<‘Pq,Hda‘a>, as in (70). Take the measured field to be

piecewise constant—i.e., constant throughout each receiver—when evaluating the
integrals.

3) Use the computed b_, B, and G, along with the expansion (75), to generate the
secondary field prescribed by the given number of sources at the given locations.

4) Compare the model prediction with the measured data, vary the source locations, and
iterate until the least-squares discrepancy between prediction and measurement attains
a suitable minimum.

The procedure as written applies to only one time gate, but the extension to fully time-
dependent functions is straightforward: we need only substitute the vectors b_ and H &

for two-dimensional arrays where the columns denote time. The relations between the
two, namely (70) and (75), acquire multiple right-hand-sides, and the optimization
mentioned on Step 7 of the algorithm is constrained further. As a final remark we note
that rigorously speaking the coefficients b, (and, for that matter, the amplitudes m, ) are

not the polarizabilities themselves but relate more closely to their time derivatives [31,32,
3].

The great advantage of the ONVMS technique is that it takes into account mutual
couplings between different parts of targets and avoids matrix singularity problems in
cases with multiple objects. Once the polarizability tensor elements and the locations of
the elemental responding dipoles are determined one can group them according to their
volume distribution. For each group a total polarizability tensor can be computed and
diagonalized using joint diagonalization, the topic of Section 1.10. The resulting time-
dependent diagonal elements have been shown to be intrinsic to the objects and can be
used, on their own or combined with other quantities, in discrimination processin

1.10 Joint diagonalization for multi-target data pre-processing

In real life situations the targets of interest are usually surrounded by natural and artificial
debris with metallic content, including, for instance, the remains of ordnance that did
explode. Thus it is usually not clear how many objects are producing a given detected
signal; all sensing methods, including EMI, are fraught with detection rates that
overwhelm cleanup efforts and hike their cost. Here we introduce a data pre-processing
technique based on joint diagonalization (JD) that estimates the number of targets present
in the field of view of the sensor as it takes a data shot, and, in a good number of cases,
even provides the capability to perform real-time characterization and classification of the
targets without the need for a forward model.



Joint diagonalization has become an important tool for signal processing and inverse
problems, used as part of independent component analysis [92], blind source separation
or BSS [93], common principal component analysis, and, more recently, kernel-based
nonlinear BSS [95,96]. We further extend the applicability of the method by using it to
detect and locate buried targets without the need for inversion. As we say above, a
variation of the method can be used to extricate time-dependent electromagnetic
signatures from ttitude information. Here we will outline the detailed procedure as
applied to the TEMTADS sensor array, a time-domain device with
25 transmitter/receiver pairs that provides 625 measurements over Ng = 123 time gates at
each sensor location.

1.11 Algorithm for joint diagonalization

The joint diagonalization algorithm we use [95, 96, 105] is a generalization of Jacobi’s
procedure to find the eigenvalues of a single matrix. Formally we set out to solve the
optimization problem

min > Y (VA VT,

g=1 i#j

s.t. V'V =1,

which we accomplish by making repeated Givens-Jacobi similarity transformations
designed to gradually accumulate the “content” of the matrices on their diagonals until a
certain tolerance level is reached. The transformations are of the form
At,)—> A'(t) =V, At )V, with the matrix Vis being the identity but with the four

elements Vi, Vis, Vsr, and Vss replaced by the two-dimensional rotation array

{ cosg, sing,

f
) , Wwith tan2¢ = =
—sing Cosg,

} 2 2
nrs + frs + nrs

Where

N = {13 (t,) — 8, (6T —[a, (t,) + 2, (t, )}

frs = 2Z[arr (tq ) — a8 (tq )][ars (tq) +a, (tq )]

The indices are swept systematically, and the procedure is repeated until convergence is
reached. The computational burden is equivalent to that of diagonalizing the matrices one
by one. The resulting eigenvalues and eigenvectors are all real because all the MSR
matrices are symmetry.

(40)

(41)

(42)

(43)



1.12 The multi-static response matrix

JD estimates the eigenvalues and eigenvectors of a square time- or frequency-dependent
multi-static response (MSR) matrix synthesized directly from measured values. To
construct the MSR matrices one just has to stack the 625 readings at each time gate in a
25 x 25 array so that each column stands for one of N: transmitters and each row
represents one of Ny receivers:

H, H, - H

S(tk): 21 22 2N, , k:].,K 'Ng
M M O M
HNl HN2 L HNN

where the element Hj; is the field measured by the i-th receiver when the j-th transmitter
is fired. The second step of the procedure is to diagonalize the 123 matrices at one stroke
so they all share a single set of orthonormal eigenvectors. In other words, given the MSR
matrix S(tx) at the k-th time gate, we look for a unitary matrix V such that the products

D, =V'S(t )V

are “as diagonal as possible” (i.e., their off-diagonal elements vanish within a preset
tolerance). By diagonalizing all the matrices simultaneously we separate the time-
dependent intrinsic features of the responding sources (and hence the interred objects),
which get encapsulated in the eigenvalues, from the other factors—notably the location
and orientation of the target with respect to the sensor—that influence the signal but do
not change as the data are being taken; these get bundled into the eigenvectors. (The fact
that the locations and orientations can be dissociated in this way from the electromagnetic
signatures is an upside of the low frequencies of the quasistatic EMI range, because the
relevant Green functions are time-independent.) Thus the measured data can be resolved
as a superposition of “elemental” sub-signals, each corresponding to an elementary
dipolar source, whose combination corresponds to the buried objects. Each source—and
the corresponding field singularity—can moreover be localized numerically: the
TEMTADS geometry is such that the diagonal of the unprocessed MSR matrix mimics a
set of monostatic measurements, akin to those taken with a handheld sensor, which peak
sharply when there is a target directly underneath. The maxima in the diagonal thus point
to the transmitter/receiver pairs closest to any responding sources. These location
estimates can be grouped and correlated to the eigenvalue distributions to estimate target
locations.

1.13 Interpretation and diagonalization of the MSR matrix

We now proceed to express our above considerations quantitatively. Initially we consider
the transmitter assembly, which in TEMTADS consists of a set of coplanar square loops
forming a regular grid. The Biot-Savart law gives the primary magnetic induction

(44)

(45)



established at the location r; of the I-th source when the j-th transmitter antenna (whose
area is o ) is excited immediately before shutoff by a current Ij:
J

o 1 ¢ dl'x(r,-r")
pr _ ] | _NPr
B} = T, 5 [ﬁ

Arr r—r'fp AT

ij ij |

This primary field induces in the I-th source a dipole moment given by
m, =U,A Ul BY

where the Euler rotation matrix U relates the instrument’s coordinate axes to the principal
axes of the source, and the diagonal polarizability matrix Ai, the only quantity intrinsic to
the source, measures the strength with which the primary field induces a moment along
each of those axes.

According to Faraday’s law, the signal measured by a receiver coil is the electromotive
force given by the negative of the time derivative of the secondary magnetic flux through
the coil. Since the field at point r of a dipole of moment m placed at rg is given by

B:&Vx(mx r-h J and thus jB-ds_—m —[ﬁdlx

4 lr—r, [ |r— r|

by straightforward application of Stokes’s theorem, one obtains that the signal sampled at
time tc by the i-th receiver (of area o ) when the I-th source is excited by the j-th

transmitter is

| H, 1 dll x(r'—r, ) M
Hij(tk)GinUijlj ZﬁGin O RD; Ir—r |3 Jl(t) O ORy, jl(tk)

=gTiCGRx [UA (t )U ] g GTX j?

where a dot over a variable indicates its time derivative. In equations (46) and (49) the
line element dlI’ lies on the x-y plane, and as a consequence the Green functions are
similar in structure to those of the simple model presented in Section 2.2. Note that we
have included the exciting current Ij and the transmitter and receiver areas in the
definition of the signal; we have explicit knowledge of these gquantities and can factor
them out. If only the I-th source is illuminated, we construct the MSR matrix for the
complete transmitter/receiver array by tiling Nr x Nt instances of the expression (49):

S=G*UAU (G")

where the primary (or transmitter) dyad G is of size N x 3, the secondary (or receiver)
dyad G* is of size Nr x 3, and the response matrix UAJU" is 3 x 3. When there is more
than one source present, the MSR matrix of equation (50) is readily generalized:

(46)

(47)

(48)

(49)

(50)



UAUI 0 ]G
s=[Gy Gy .|| 0 UAU] | (Gh)

A, 0 |G
=[Gy, GJU, ..]| 0 A, - [[(GIU,) |,

where we see that the features intrinsic to the targets can be separated formally from the
particulars of the measurement—that is, from the geometry and dimensions of the sensor
and the sensor-target attitude. The array S has size Nr x Nt and is square if Nr = N, as is
the case with TEMTADS. This allows us to diagonalize the matrix but does not suffice to
guarantee that the extracted information is useful—i.e., that the eigenvalues and
eigenvectors are real, and that the latter are orthonormal. For that to hold we must have a
real, symmetric matrix, which requires G* = G =G, . This cannot be rigorously true,

because the receivers cannot coincide exactly with the transmitters, but holds
approximately for TEMTADS if we factor the exciting current and the coil areas out of S,
as we did in equation (49). The diagonalization we perform is thus a particular case of a
singular value decomposition (SVD), and in what follows we use “diagonalization” as
shorthand for “SVD of a symmetric matrix.”

The decomposition (51) exhibits the actual polarizability elements but is not directly
available to us because the Green tensors are not orthogonal. To see what we do get when
we diagonalize S we can perform the SVD on G:

S=—GUAU'G" = W[ZVT UAUTVZ]WT = WZAZ'W' = YAYT

In the intermediate step we have used the fact that the matrix within the brackets is real
and symmetric and thus has a purely real eigendecomposition. Result (52) shows that the
eigenvalue matrix A, though time-dependent, is not solely composed of source responses,
but also contains location and orientation information extracted from the Green tensors.
The eigenvectors, likewise, include information from both the polarizabilities and the
measurement particulars.

We also see in the decomposition (52) that S contains an unknown “hidden dimension”—
3N, where N is the number of sources—in the size of the block-diagonal response matrix.
Numerical diagonalization (or, in general, the SVD) of S will impose this middle
dimension to be Nr = N:. Ideally, the method should be able to resolve up to | N, /3]

responding sources, or eight for TEMTADS, but the actual number is lower. For one, the
procedure will resolve targets only when they are spatially separated: two distinct dipoles
sharing one location decrease the rank of the G matrices, and hence of S, by 3. In any
case, diagonalization of S can again let us estimate the number of targets illuminated by
the sensor; since the only time-dependent quantities are the intrinsic polarizabilities of the

(51)
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sources, we expect the additional information provided by the time decay of the
eigenvalues to be useful for classification.

The development outlined above corresponds to each time gate taken separately. To make
sense of the time-dependent information we have to find a way to “follow” each of the
eigenvalues as the signal decays. (A similar process must be carried out when using the
dipole model for inversion.) One could in principle diagonalize the MSR matrix at each
time channel, and the eigenvectors, which depend only on geometry and pose, should
stay constant; however, it is not possible to know a priori the order in which the
eigenvalues will be given by the diagonalization; this fact—not to mention noise and
experimental uncertainty—makes it inevitable to have to disentangle the tensor elements
by hand, which is easily done wrong. Instead, we explicitly look for an orthogonal matrix
of eigenvectors that diagonalizes all the MSR matrices simultaneously. The procedure we
employ is a generalization of the method for single matrices, and is well-known; it is
sketched in next Section.



Chapter 2. Inverse Problems

2.1 Introduction

Several EMI sensing and data-processing techniques [2-5, 60,64,65] have been recently
developed for detecting and discriminating between UXO and non-UXO items. Typically
the first step of these methods is the recovery of a set of parameters that specify a
physics-based model representing the object under interrogation. For example, in EMI
sensing, the recovered parameters consist of the object’s location and spatial orientation
in addition to “intrinsic” parameters such as the polarizability tensor (along with some
parameterization of its time-decay curve) in dipole models or the amplitudes of
responding magnetic sources in the NSMS and ONVMS models. EMI responses depend
nonlinearly on the subsurface object’s location and orientation, therefore determining the
buried object’s orientation and location is a non-linear problem. In this section several
inverse scattering approaches are described for EMI data inversion.

Most EMI sensors are composed of separate transmitting and receiving coils. When the
operator activates the sensor, a current runs through the transmitter coils, resulting in the
establishment of a (“primary” or “principal”’) magnetic field in the surrounding space. By
Faraday’s law, this time-varying magnetic field induces eddy currents in highly
conducting bodies (ferromagnetic bodies also have their magnetization affected by the
impinging field). These currents and magnetization in turn generate a (“secondary” or
“scattered”) magnetic field that also varies with time and induces measurable currents in
the receiving coils. At the end, the electromagnetic data are inverted using different
forward models. The procedure for estimating the location, orientation, and
electromagnetic parameters of a buried object (linked in a “model vector” V) is carried
out by defining an objective function that quantifies the goodness-of-fit between the
measured data and the predictions of the forward model. Routinely, a least-squares (LS)

approach is taken to recover v: formally, if d™ s the vector of the measured scattered
field and F(v) is the solution to the forward problem, the least-squares criterion assumes
the form

minimize ¢(v) = d** - F(v) “2

A simple way to determine the model vector V is to use the Gauss-Newton method,
which starts with an initial guess vo and updates it iteratively through

Viea = Vi TS5 (54)

where k denotes the iteration number and sk is a perturbation direction; we solve for the sk
that minimizes ¢. In many cases the LS approaches suffer from an abundance of local

minima that often leads them to make incorrect predictions of location and orientation.
Global search procedures, such as differential evolution (DE) [97,98] and genetic

(53)



algorithms[37], have been recently developed to avoid this problem. We have combined
the DE algorithm with the NSMS model [3] (or with the dipole model [37]) to recover
locations and orientations of buried objects. Once these extrinsic properties are found we
perform classification using Mixed Models (MM) and standard Matlab built-in classifiers
based on maxmum likelihood methods or on linear, quadratic, or Mahalanobis distances.
Both gradient and global search approaches are computationally intensive because they
require a massive number of forward-model evaluations and because the determination of
the nonlinear elements of v—the location and orientation of the object—is a nontrivial
and time-consuming problem in itself. To avoid non-linear, time-consuming inversions,
and by so doing streamline the inversion process, we recently developed a new physics-
based approach called the HAP method and applied it to various UXO discrimination
problems. The HAP method exploits an analytic relationship between the magnetic field
vector H, the vector potential A, and the scalar magnetic potential ¥ (Psi) of a
hypothetical point dipole to determine the location of a visually obscured object. Of these
quantities only the magnetic field (and often only one of its components) is available, and
as part of this project we developed a numerical procedure based on the 2D NSMS model
that replaces the measurement surface around the scatterer with a flat plane of dipoles at a
(known) location intermediate between the instrument and the target. The amplitudes of
these responding sources can be computed starting from high-spatial-coverage
geophysical data by solving a linear system of equations and can then be used to

reconstruct H, A and ¥ at any point on or above the measurement surface and thus to

solve for the relative location R and the polarizability M of the hypothetical dipole.

This chapter briefly overviews gradient-based optimization, differential evolution, and
the HAP method [6].

2.2 Gradient-based methods of optimization

One of the most popular approaches for solving inverse problems is the gradient method
[39-41, 100, 101]. The gradient method requires the system’s Jacobian, which contains
the gradients of the scattered field with respect to the unknown parameters of interest. In
many cases it is impossible to determine the scattered EM field’s derivatives analytically;
this, however, is not a problem with either the dipole model or the NSMS model. Further,
the NSMS-based inverse approach always results in an over-determined system and thus
does not suffer from the ill-conditioning that usually afflicts finite-element or finite-
difference time-domain methods. The EM scattering problem can be written in compact
matrix form as:

[ZK={H"} (55

where [Z] is the scattering matrix, {2} s a vector containing the amplitudes of responding
dipoles (normalized by the primary field), and {H} IS a vector containing the measured
data over a set of points. The important point to note is that [Z] in the NSMS contains
explicit expressions for the responding source amplitudes 2 in terms of the object’s



location and orientation that can be differentiated analytically and that contain no
singularities in the regions where they must be evaluated. Let us assume that ¢ is a set of
parameters (orientation, depth, etc.) that must be determined from a set of measured data
[42]. A convenient way to view the problem is to define a forward map as one that

associates a given @ with an initial value % (which serves to kick-start the inversion

process). A least-squares formulation of the problem identifies a minimum of the error
function by solution of the equation

| B e )

where 31, is a Jacobian matrix based on {“ﬂ—l}, p is the iteration number, the modeled

mod
values tH" {93} 5re predicted based on {“ﬁfl}, and the solution {oa,}
incremental steps in the unknown parameters, which are updated via

is a vector of

{a,}={a, }+{5a,}

2.3 Differential evolution

Differential evolution (DE) [3, 3, 97,98], one of the global-search algorithms recently
developed to bypass the local-minima problem that often leads standard gradient-search
approaches to make incorrect predictions for location and orientation, is a heuristic,
parallel, direct-search method for minimizing nonlinear functions of continuous variables.
Similar in concept to the genetic algorithms that have been used with much success on
problems with discrete variables, DE is easy to implement and has good convergence
properties.

We have combined the DE algorithm with the above-discussed dipole, NSMS, and
ONVMS techniques to invert digital geophysical EMI data following a procedure
reminiscent of the stepwise optimization described in the previous section. The scattered
field from any object whose location and orientation are known depends linearly on the
magnitudes of its responding sources, and the procedure starts by giving initial values of
the attitude parameters and using these estimates, along with the measured data, to
determine the source amplitudes by solving a linear system of equations. The amplitudes
thus found are fed into a nonlinear objective function that quantifies the mismatch
between measured data and model predictions and whose (DE-determined) minimum
serves to refine the estimates for location and orientation. The procedure continues to
alternate between these linear and nonlinear stages until it reaches convergence (or a
preset maximum number of iterations). The responding amplitudes are then stored and
used in a later classification step, while the location and orientation parameters are used
during target excavation.

Differential evolution uses Np-dimensional parameter vectors v,

(55)
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Voo p=12, .., N

p

where G is a generation/iteration index. In our case ¥ =0 Yo 2004} - the first three are

the object’s location and the other two are the polar (¢) and azimuthal (¢) Euler angles
that define its orientation (by using only two angles we are assuming that UXO are
effectively BOR). The objective function to be minimized is defined as

(MN ZZ'HSCf(V) Hdata(v)|

7
data

where Hmi () and Pt are respectively the theoretical prediction (for vector V) and the
measured magnetic field data at the M -th measurement point (of M) and the T _th

frequency or time point (of N ). The DE optimization process itself can be subdivided
into three steps:

Voo p=12, .., N

1) The first step creates random initial populations v, that span the

entire parameter space. For a given Voe in the generation, a linear system of
equations is constructed by matching measured data to the secondary magnetic field .

Q

This system is linear in *“i and is solved directly for those parameters.

2) The second step, which requires the most execution time, is the calculation of the
secondary magnetic field each of the Voe . When the NSMS (or ONVMS) model is

used, the calculation for each ¥rc requires a fraction of the time required to execute
any other proposed 3D forward model; this relative computational efficiency makes
NSMS (or ONVMS) an attractive alternative for performing real-time inversion.

3) Next comes the evaluation of the cost function for each population member and the
storage of the best sets of parameters. At each step, the DE algorithm produces an
estimate of position and orientation. By examining and sorting the cost function at
each step, the best-half of the population is chosen as the next generation’s
parameters, whereas the bottom half is discarded. Thereafter the next generation is
created by taking the parameters in the previous generation and applying crossover
and mutation operations on them. The three steps are repeated until the maximum
number of generations has been reached or until the objective function reaches a
desired value. Rules for using DE are discussed in more detail elsewhere [97,98].

(57)
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Figure 2.1: The HAP approach for a dipole.

2.4  The HAP method
2.4.1 Estimating the location and orientation of buried objects

In the EMI regime, the secondary magnetic fields measured by the EMI receivers are
induced by eddy currents magnetic dipoles which are distributed non-uniformly inside the
scatterer. There are some particular points, named “scattered field singularities” (SFS),
where most of these sources are concentrated. Recent studies show that under certain
conditions the entire scatterer can be replaced with several responding elementary sources
by putting them at SFS points [85, 87, 102]. The mathematical and physical properties of
SFS and its applications to EM scattering problems are very well documented, and their
study is known in the literature as “Catastrophe Theory” [102-103]. Our objective has
been to determine the locations of the SFS from data without solving traditional ill-posed
inverse-scattering problems. We have found a new analytic expression for estimating the
location, orientation, and polarizability elements of a buried object starting from
measured EMI data. The algorithm (dubbed “HAP” [6]) is based on the fact that a
target’s response can be approximated by dipole sources concentrated at SFS points. It
utilizes three global values at a single location in space: (1) the magnetic field vector H,

(2) the vector potential A, and (3) the scalar magnetic potential ¥ . Since among these
quantities only the H field (and sometimes only one of its components) is measurable, we

employ a variation of the NSMS model to obtain A and ¥ we distribute elementary
sources on an auxiliary planar layer, located between the sensor and the object, and find
their amplitudes by fitting measured data.

The magnetic field H and the scalar (%) and vector (A) potentials of a magnetic dipole
are

e’ I(3R(R-m)
T 4R R?

)(1 JkR} k? (R x (R x m))

(59)



(R-m) . kR
= 1- jkR )’
v 47R® ( J )e ,
mxR ] ; mxR
A B g o
N
G(R)=—(1- jkR)
where Ar

where K is the wave number in the surrounding medium, R= "1, r is an observation

point, and Ya is the location of the dipole [104] (Error! Reference source not found.).

Note that the magnetic field (59) has terms that decay as R™, R™ and R™. The range
kR>>1 s referred to as the far zone, and fields in this range are referred to as being in
the far field. Similarly, fields in the near zone kKRU lare referred to as being in the near

field, and the zone KR=~1ljs called intermediate zone. Typically, UXO detection and
discrimination are conducted in the near zone. In addition, in the EMI regime
displacement currents are considered irrelevant, which means that the contribution of the

k? term in equation (59) can be set to zero. Making this assumption, taking the dot
product of (59) with R, and using (60) we get that

i(BR(R-m)_m\'RG(R):ZR-
REL  R? )

M G(R) =2y

H-R=H-(r-r,)= =
Similarly, taking the cross product of (59) and R and using (61) we obtain

me_A
R? i,

Hx R =G(R) 1 {3R(R-m)_ )

E R2 mJ xR = —G(R)
Now, the cross product of H and (63) gives
Hy

{Hxé} =Hx[HxR]=H(H-R)-R |[H =2H y-R |H]

which allows us to solve for R:

. 2H l//—|:H2><A/,uO:|
H

The location R of the responding dipole is seen to be independent of the frequency. In
other words, as long as MQS assumptions hold, equation (65) is valid when the dipole is
in free space and equally well when it is embedded in a conducting medium such as

seawater. Also note that R is determined as a ratio, which makes the expression (65)

(60)

(61)

(62)

(63)

(64)

(65)



partially tolerant to noise due to scaling arguments, since A and ¥ are dependent on the

H field (see equations (62) and (63)). Taking the cross product of R and (63) from the
left side and using equation (62) we obtain an expression for the dipole moment m :

R
m =@(RW+[A/HO xR])
with R previously determined from equation(65)
2.4.2 A simplified HAP method

It is possible to simplify the HAP method by eliminating the need for the vector potential.
We rewrite equation (62) as

H-r,==2y+H-r,

Which provides a least-squares estimate of Y4 when evaluated at N distinct observation
points:

) HE) A |7 [ e R
H,(r,) H(r,) H/(r) yd | 2w(r)+H(r) T,
: i M
H. (r,) Hy(rN) H (r,) %a =2y (r,)+H(r,)-r,

2.4.3 Determining the HAP amplitudes

To construct the potentials (and the other field components, if unavailable) we assume

that the field is produced by a surface distribution of magnetic charge q(s) spread on a
fictitious plane located just below the ground (Error! Reference source not found.).

The positions Ys of the sources are fixed and known by construction, and the field can be
expressed as the matrix-vector product

_a6s) z-z, s
Hz(r)_jv“_rrdszzz.q

by employing a quadrature scheme. To determine the array 9 of charges we minimize

the difference between model predictions and collected data H™" at a set of known
points:

g =arg min%(zZ .q- H?eé‘s)2 =[ZI -Zz}fl[ZI.H;ﬂ%],

(66)

(67)

(68)
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where each matrix row corresponds to a different measurement point and each column to
a subsurface of the underground virtual source layer. The potential is then found from

w(r)= I C|l(s_)r| S'_Zl//'q-

Current EMI sensors operate in both monostatic and multistatic modes. Monostatic
sensors, such as the Geophex frequency-domain GEM-3 instrument [106] and the
Geonics EM-61 and EM-63 time-domain instruments [70] have collocated transmitter
and receiver coils, whereas multistatic sensors like the MPV time-domain instrument [19]
and the Berkeley UXO Discriminator (BUD) [46] have multiple transmitters or multiple
receiver coils or both. We have implemented numerical procedures to estimate the vector
and scalar magnetic potentials starting from multi-static or mono-static EMI data. For
bistatic data we determine the potentials as described above; for the monostatic case we
normalize the amplitudes of the responding auxiliary sources by the primary magnetic
field. The procedure is discussed in further detail in [6].

It is worth reiterating that the HAP method replaces the scatterer with a point dipole, and
is thus based on a rather drastic simplification; yet it provides acceptable location
estimates because the sources within the target that produce the scattered field tend to
concentrate at a set of “scattered field singularities” [85, 87]. The locations of these
singularities change at every measurement point, since the primary field of the sensor
also changes; the HAP method takes these variations into count and outputs an average
location as a result.

Figure 2.2: Determining the location and orientation of a buried

target.

The method assumes the object is a point dipole and exploits an analytic relation between

the field measured at " and the scalar potential at the same point to find the location s,
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The potential is constructed using a layer of equivalent magnetic sources placed between

the sensor and the object; “isa typical location on the layer.
2.4.4 The HAP method with gradient information

The HAP technique can be simplified further by reducing the formulation such that it
only requires the magnetic field and its gradient, both of which are measurable by current
sensors. After taking the gradient of equation (62) with respect to the x-, y-, and z-
coordinates, we obtain

X aHy 8Hz aHx aHy aHz
+ Yy + 2, =3H, +X +y +Z
OX OX OX OX OX OX

oH oH
xdaHx+yd L +2, aHz=3Hy+xaHX+y vy, M

+2
oy oy oy oy oy oy

X aH y aH z aH X aH y 6H z
+ Yy +24 =3H, +X +y +12
0z 0z oz 0z 0z oz . (72)

Xy

z

X4

Thus, in order to determine the target’s location we need only the magnetic field H and
its gradient at a given point in space.



Chapter 3. Next-generation sensors: modeling and
validation

3.1 Introduction

A wide range of different electromagnetic induction sensing technologies, with novel
waveforms, multi-axis transmitters, and scalar/vector receivers have been recently
developed under SERDP-ESTCP programs. These advanced EMI sensors—including the
MetalMapper, the TEMTADS array, the Berkeley UXO discriminator (BUD), and the
man-portable vector (MPV) sensor—provide measurements that feature a combination of
high spatial diversity, different viewpoints, and a very wide dynamic range and which do
full justice to the vector character of the electromagnetic field. Current state-of-the-art
EMI systems thus offer data of unprecedented richness for use by discrimination
processing algorithms. We have adapted our advanced EMI models and data-
interpretation and -processing schemes to all these innovative EMI systems in order to
take advantage of the quality of the data they provide.

This chapter overviews these advanced EMI sensors, their geometries and sensing
modalities, and the procedures we have in place to model the way they establish primary
fields and measure subsurface responses. We validate our methods by making
comparisons between measured and modeled data for single- and multi-target scenarios.
We initially describe the MetalMapper, continue with TEMTADS and BUD, and finish
with a look at the MPV.

3.2 MetalMapper

The MetalMapper (MM) is an advanced EMI system for UXO detection and
discrimination developed primarily by G&G Sciences and commercialized by
Geometrics. The system has three mutually orthogonal transmitter rectangular loops. It is
able to illuminate a target with primary fields from three independent directions from a
single spatial field point. The 1 m x 1 m Z transmitter loop is located at ground level. The
Y transmitter loop, also 1 mx 1m, is centered 56 cm above the Z loop, as is the
0.98 m x 0.98 m X transmitter (Figure 3.1). The targets are illuminated from different
directions depending on the geometry between a particular transmitting loop and the
target. The system has seven 10-cm-side receiver cubes placed at seven unique spatial
points on the plane of the Z transmitter loop. The receivers measure the vector dB/dt at
each of the seven points, thus providing 63 independent readings of the transient
secondary magnetic field for each instrument location. The positions of the receiver
cubes’ centers with respect to the Z transmitter loop (whose center we consider as the
local origin of coordinates for the system) are given in Error! Reference source not found..



Figure 3.1: The MetalMapper during SLO site deployment (left) and its

schematic diagram (right).

Table 1. MetalMapper receiver locations with respect to the center of the Z transmitter

loop
RX # X [cm] Y [cm] Z [cm]
0 39 39 5
1 —26 26 5
2 13 13 5
3 0 0 5
4 -13 -13 5
5 26 —26 5
6 -39 -39 5

The MM transmitters are modeled as infinitely thin rectangular wires. The primary
magnetic induction produced at any observation point r by the T-th loop is determined
simply from the Biot-Savart law,

Y I [AL, xR,
BT(f)=&ZM1 T=123
4z RT,i
where, R, =|r—r |, r; is the location of the i-th current element, and Az, is the

tangential length vector for the i-th subsection of the loop. In what follows, and unless we
note otherwise, we divide each transmitter coil into N. =40 subsections whenever we

calculate the primary magnetic induction using Eqg. (73).

(73)



Receiver cubes

Figure 3.2: The Metal Mapper geometry.

The observation point r is defined with respect to the global Cartesian coordinate system
XYZO; r is the location of the i-th current element on (in this case) the T=3

3,

transmitter, which carries a current 1, in the direction ¢_,.

The MM receiver assembly consists of seven cube sensors. Each of these measures along
three orthogonal directions the induced voltages that, from Faraday’s law, correspond to
the negative of the time derivative of the secondary magnetic flux through the area
spanned by the different coils. The induced voltage in the R-th sensor along the «-th
direction, where R=0,...,6 and a=z,y,x, is computed using

‘A, As/
_1 6t i,R

Ve OB
__J‘_ ds® = M A
where s is the area of the relevant coil (all of which are 10 cm x 10 cm squares in

MetalMapper) and 1, is the unit vector perpendicular to it, as?, and rc, are respectively

the i-th sub-area and vector location point on sZ, B,(r%) = H,(r7%) is the magnetic
induction (proportional to the magnetic field H (r%)) produced at r=, by a source placed
at r. Within the ONVMS model, H (r7) is calculated using equation (74). In what

follows we always divide sZ into N =4 sub-areas.

(74)
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Figure 3.3: Response of an 81-mm mortar illuminated by the MM
Z-transmitter: measured (left), ONVMS prediction (center), and
mismatch between modeled and actual data (right). The mortar is
placed 35 cm below the sensor center and oriented 45 degrees

nose down. The data are plotted in log10 scale.

To validate the MetalMapper versions of our advanced EMI codes we conducted
comparisons between actual and measured data for different targets. Figure 3.4 through
Figure 3.6 compare measured and ONVMS-modeled data for an 81-mm mortar placed 35
cm below the sensor center, oriented 45 degrees nose-down and illuminated in turn by the
Z, Y, and X transmitters. We use three responding ONVMS sources whose locations are
determined with the combined ONVMS-DE algorithm. The inverted location matches the
actual target location very well. The model is seen to predict target EMI responses very
accurately.
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Figure 3.6: Photo of the TEMTADS in deployment at Blossom Point Test Site (left)

and a schematic diagram of its Tx/Rx sensors (right).

3.3 TEMTADS
3.3.1 TEMTADS modeling

The NRL time-domain EMI sensor array TEMTADS is a next-generation system
designed for subsurface target discrimination. The sensor consists of 25 transmit/receive
pairs, each composed of a 35-cm square transmitter loop surrounding a 25-cm square
receiver loop, arranged in a rectangular 5 x5 grid with 40-cm neighbor-to-neighbor
separation [56] (Figure 3.13). The sensor activates the transmitter loops in sequence, one
at a time, and for each transmitter all receivers receive, measuring the complete transient
response over a wide dynamic range of time going approximately from 100 microseconds
(us) to 25 milliseconds (ms) and distributed in 123 time gates. The sensor thus provides
625 spatial data points at each location, with unprecedented positional accuracy.

In modeling for TEMTADS, the transmitter loops are idealized as infinitesimally thin
35 cm x 35 cm square loops. The primary field produced at any observation point by a
given transmitter loop is determined from equation (73). We use N,, =20 for TEMTADS
unless we note otherwise. The TEMATDS measured signal is modeled using equation
(74), assuming « =z throughout and receiver sizes of 25 cm x 25 cm and dividing each
receiver into N, =9 sub-areas. We compare actual and ONVMS modeled data for a
105-mm projectile in figure 13. and find very good agreement
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25th time channel. The target is buried at a depth of 30 cm and
oriented horizontally relative to the TEMATDS system.

il

25-mm  37-mm  60-mm  81-mm 105-mm 105-mm HR

Figure 3.8: The APG TOlI.

Table 2. Inverted location and orientation for TEMTADS data

Case # Ground truth /estimated for a 37 mm UXO

1 Xo [m] Yo [m] Zo [m] Azimuth [Degree] Dip [Degree]
2 0.0/(0.03) 0.0/(0.02) -0.35/(-0.39)  0/(3) 0/(5)

3 0.0/(0.013) 0.0/(0.007) -0.34/(-0.369)  0/(3) 90/(88)

4 0.0/(0.001) 0.0/(0.02) -0.38/(-0.41)  0/(5) -90/(85)

5 0.0/(0.04) 0.0/(0.05) -0.37/(-0.405)  0/(5) 45/(35)

a) APG test-site classification

To demonstrate the classification performance of the advanced EMI models we
conducted discrimination studies at the APG test site. We applied a combined
HAP/NSMS approach to TEMTADS data sets. The main objective of the study was to
discriminate TOI from non-TOI targets and further to indicate the type and caliber of
each TOI. The TOI at APG varied in size from 25 mm up to 155 mm and are depicted in
Figure 3.8.

There were three types of data sets: 1) Test stand data set collected for 14 UXO items
placed in air for different depths and orientations; 2) Calibration grid data sets collected



over the same targets and over some clutter items; 3) Blind grid data sets collected over
214 buried items. According to a preliminary data a Figure 3.8 analysis by ESTCP, soil
responses were insignificant at this site, and they were thus subsequently neglected. The
test-stand and calibration grid data sets were used to test data inversion and
discrimination algorithms. Object depths were inverted for each grid using the HAP
method. The results are tabulated in Figure 3.9. Since, TEMTADS half thickness is 5cm,
the inverted depths were in very good agreement (between 1=(-4+5) and 2=(-3+5) cm)
with the actual depths for test-stand UXO items.

1.4 . . ;
- | verted
1.2+ - Ground truth +0.15 m| |
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Figure 3.9: Comparison between the inverted and actual depth
for all 65 APG calibration targets.

We also used the HAP method to invert for the depths of all 65 calibration targets. The
results are depicted in Figure 3.9. The inverted depth differed by up to 15 cm from the
ground truth, a difference due to the fact that HAP estimates the distance from the sensor
center to the target center, as was recorded for test-stand cases, while for calibration items
the depths were measured from the ground surface. The sensor is 4" (10.1 cm) above the
ground and the transmitters are about 10 cm thick, and therefore the method provides
reasonably accurate depth estimates.

Once we established that the HAP method estimates depths accurately for test-stand and
calibration items we proceeded to estimate the total NSMS for all items and used it for
discrimination. Figure 3.17 shows the inverted total NSMS as a function of time from
test-stand TEMTADS data sets with the 105-mm projectile and the 81-mortar as targets.
Each set of test-stand measurements comprised six different depths and target



orientations. The total NSMS is seen to be unique for all cases and, for both test-stand
and calibration data. We then determined the best NSMS classification features. We fit
the total M_ NSMS curves with the Pasion-Oldenburg expression M_(t)=kt”e™*, where

tis time, and k , # and y are the fitting parameters for each anomaly. We studied different
combinations of Ink, 4, and y using test-stand data. The results for # vs. Ink appear In

Figure 3.11, and those for » vs. Ink and » vs. § appear in Figure 3.12 and Figure 3.13.
We see that the best classification performance is achieved using Ink and £.
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Figure 3.10: Inverted total NSMS for APG test-stand 105 mm
projectile and 81 mm mortar.
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Figure 3.12: Scatter plot of inverted vs (left) and (right)
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Figure 3.13: Scatter plot of inverted vs. classification features
for all 214 APG blind-test anomalies.

Finally, the described data inversion and classification schemes were applied to the 214
blind grid-data cells. These were also first inverted to determine the total NSMS, from
which time-decay-history curves were synthesized, discrimination features were
extracted, and classification was performed vis-a-vis test-stand UXO items. A scatter plot
of in d classified Ink and f features for all 214 APG test anomalies is shown verted an in

Figure 3.13. The result illustrates that the inverted features for 60-mm, 81-mm, and 105-
mm TOI are clustered tightly, while those for 37-mm and 25-mm TOI s are scattered and
mixed with those of clutter items. This complicates classification.

To overcome this problem, in addition classification/clustering approach, the entire time
decay history of the total NSMS were also examined and compared to the total NSMS of
the test-stand TOI case-by-case as a check on the classification. The comparisons are
summarized in Figure 3.14 andFigure 3.15 .For all APG test anomalies a ranked list was
created in which the anomalies were ranked as clutter or TOIl and TOI were further
ranked by caliber and type. This list was submitted to the Institute for Defense Analyses
(IDA) for independent scoring. The scores showed that the advanced model was able to
identify all UXO as TOI and classified all UXO correctly by type and caliber. The false-
positive rate was 5%.
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Figure 3.16: Schematic diagram of the BUD system.

b) BUD

The Berkeley UXO discriminator (BUD) is an advanced standalone time-domain system
developed at the University of California to detect and discriminate UXO in the 20-mm
to 155-mm size range, and consists of three orthogonal coil transmitters. The horizontal
Z-coils are vertically separated by 26" and have a 39" x 39" footprint. The Y- and X-
vertical coils are mounted on the diagonals between the Z-coils (see Figure 3.16): the X-
coils are 45.5" x 23.5" while the Y-coils are 45.5” x 22.5" in size, and both are separated



by 6”. The BUD illuminates targets in three independent directions, which induce eddy
currents in all three modes. BUD has eight pairs of differenced receiver coils placed
horizontally along the two diagonals of the upper and lower planes of the Z-transmitter
loops. The pairs are located on symmetry lines trough the center and are wired in
opposition so as to cancel the primary magnetic field during transmission Figure 3.23
shows the BUD system in operation.

The BUD transmitter loops were modeled as idealized infinitely thin square loops. The
primary fields produced at any observation point by the transmitters are determined using
a suitable modification of equation. (73), again with N_ =40. The BUD measured

signals are modeled using equation (74) as

& OB (T, N OB, (', — T,
VR :_Z I( Ié: 0) ‘Asi,R +Z I( Ié: O) ‘Asi,R' ASi,R = ASi,R2

i=1 i=1

where r, .and r/_ are the locations of the Rx and Rx' receivers, given in. For the case of
BUD we divide the receivers into N, =9 sub-areas.

W T TR

Figure

Table 3. BUD receiver locations with respect to the origin.

Rx# X [cm]Y [cm] Z [cm] Rx’# X’ [cm] Y’ [cm] 7’ [cm]
1 35.48 3548 0 1’ —35.48 —35.48 66

(75)



2 -35.48 35.48 0 2 35.48 -35.48 66
3 —35.48 -35.48 0 3 3548 -35.48 66
4 35.48 -35.48 0 4 -35.48 35.48 66
5 1929 1929 0 5 -19.29 -19.29 66
6 -19.29 19.29 0 6’ 19.29 -19.29 66
7 -19.29 -19.29 0 7 19.29 19.29 66
8 19.29 -19.29 0 & -19.29 19.29 66

All data presented here were collected by personnel from the Berkeley UXO team at
Yuma Proving Ground in Arizona over objects at different orientations and depths. The
response of each object was represented with only five NSMS. Figure 3.18, Figure 3.19,
and Figure 3.20 show comparisons between modeled and actual data for all transmitters
and receivers and for all time channels. The results clearly show that the NSMS very well
predicts the EMI response of a M-75 mm UXO. Total NSMS amplitudes were
determined for three samples each of M-75, 60-mm, and M-37 UXO and are depicted in
Figure 3.21. The result demonstrates that the NSMS is applicable to the BUD system and
is a good discriminator.
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Figure 3.18: Comparisons between actual and predicted data for
an M75 UXO illuminated by the BUD Z transmitter. Solid lines
are actual data, circles stand for NSMS predictions.
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Figure 3.19: Comparisons between actual and predicted data for
an M75 UXO illuminated by the BUD X transmitter. Solid lines

are actual data, circles stand for NSMS predictions.
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Figure 3.21. Recovered total NSMS from calibration BUD
measurements for M-75 (blue), 37-mm (green), and M 60 (red)
UXO.

Figure 3.22: Photo and schematic diagram of the MPV sensor.

¢) MPV

The MPV sensor, developed by G&G Sciences, Inc., consists of two transmitter loops
and five triaxial receiver cubes. The receivers are located as follows: Cube #0 above
center (z=30.6 cm); Cube #1 at the origin; Cube #2 left of center (x=-39.6 cm);
Cube #3 forward of center (y =39.6 cm); and Cube #4 right of center (x =39.6 cm).
These receivers accurately measure the complete transient response over a wide dynamic
range of time going from 100 ps to 25 ms. In numerical models we assume that the
transmitter loops are idealized as infinitely thin circular loops with 37.5 cm radii, and
separated by 12 cm. The complete primary field produced at any observation point by the
transmitter loop is determined from equation (73) as

IAE xR

B(r)= ZZ

7T 121 i=1

where, for the t-th transmitter loop, t=1,2, R, = ‘r—rtji‘, r;;is the location of the i-th

current element on t-transmitter, and AZ,; is the tangential length vector for the i-th
subsection. We use N =20 unless we note otherwise. The MPV measured signal is

(76)



modeled using equation (74) with each loop having area 10 x 10 cm? and divided into 4
sub-areas.
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Figure 3.23: Multi-object MPV data collection setup (right).

otz

The red circle corresponds to the MPV head, which was placed
stationary; the targets were moved along the blue line. The
center of the first target (the 81-mm) was placed at the blue
points, and the distance between the first and second targets was

kept fixed.

To illustrate the applicability of the ONVMS for MPV data we conducted studies in
multi-target inversion and discrimination. The measurements reported here were
conducted at the SKY Research office in Hanover, New Hampshire. The sensor was
placed stationary, and data were collected for two objects with different separations and
orientations placed on 5 x 5 grid points. The separation between the grids points was 20
cm. The targets were an 81-mm munition and a 40-mm round. The data were inverted
using the simple dipole model with DE and the ortho-normalized volume magnetic
source model (ONVMS). The number was assumed given in the simple dipole model,
while in the ONVSMS four arbitrarily distributed interacting dipoles were used. The
dipoles’ positions were determined using DE. The inverted polarizability tensor principal
elements for the projectiles are depicted in figure 30 for three different target-to-target
separation vectors: (25, 0, 0) cm (blue), (40, 0, 0) cm (red), and (25, 0, 25) (green).
The single-dipole/DE algorithm accurately inverts the polarizability elements for the
shallow 81-mm projectile but fails to identify the 40 mm projectile when the distance
between the two is 25 cm (blue) and when the 40-mm is placed deeper (green). When the
distance between the targets increases and they both have the same depth the algorithm
identifies the 40-mm projectile correctly. The same data sets were inverted using the
combined ONVMS-DE technique. The inverted locations showed the ONVMS dipoles



grouped around the locations of the projectiles, and for discrimination we summed the
ONVMS amplitudes for each group. The results for the two targets, which appear in
Figure 3.25, show that the inverted ONVMS is consistent for all cases and both
munitions. The ONVMS technique is seen to be a robust algorithm for discriminating not
only single well-isolated targets but also multi-target scenarios.
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Figure 3.24: Inverted polarizability principal elements for two targets in
three different setups; results for the 81-mm projectile at left and for the
40-mm munition at right. In all three cases the targets were horizontal,
and the vertical distance between the MPV center and the 81-mm was 40
cm. The center to the center coordinate differences between the 81-mm
and 40-mm projectiles are (-25, 0, 0) cm, (-40, 0, 0) cm, and (-25, 0, 25)
cm.
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Figure 3.25: Inverted total ONMS for 81 mm (left) and 40 mm (right)

projectiles for three different cases.

We have just compared the single-dipole and ONVMS model for UXO discrimination.
(We do note that in all cases we used DE to perform the crucial task of determining
object locations). The dipole model is sufficient for inversion when the different targets
are well separated but breaks down when they are placed close to each other or when the
EMI response from one item dominates. In contrast, the physically complete model is
able to predict target EMI responses accurately for these situations, making the ONVMS
method our preferred tool for the live-site UXO classification studies we present next.

3.4 ESTCP live-site classification studies using advanced models
3.4.1 Introduction

The Environmental Security Technology Certification Program (ESTCP) recently
launched a series of live-site UXO classification blind tests at increasingly challenging
and complex sites [57-59] aiming to demonstrate the performance of advanced EMI
detection technologies and UXO discrimination and classification algorithms. The first
test was conducted in 2007 at the UXO live site at the former Camp Sibert in Alabama
using first-generation EMI sensors (the commercially available EM61-MK2 and EM-63,
both developed by Geonics Ltd.). The Sibert test was relatively simple: one had to
discriminate well-isolated large intact 4.2"" mortars from smaller range scrap, shrapnel,
and cultural debris. The second ESTCP discrimination study to demonstrate the
applicability of EMI classification technologies was set up in 2009 at the live UXO site in
San Luis Obispo (SLO) in California and featured a more challenging topography and a
wider mix of TOI [57-58]. Magnetometers and first-generation EMI sensors were
deployed on the site and used in survey mode. Two advanced EMI sensing systems—the
Berkeley UXO Discriminator (BUD) of Section 0 and the Naval Research Laboratory’s



TEMTADS EMI array, presented in Section 3.3—were used to perform cued
interrogation of the anomalies detected. A third advanced system, the Geometrics
MetalMapper of Section 3.2, was used in both survey and cued modes for identifying and
classifying anomalies. Among the munitions buried at SLO were 60-mm and 81-mm
projectiles, 4.2"” mortars, and 2.36" rockets; three additional munition types were
discovered during the course of the demonstration. The third site chosen was the former
Camp Butner in North Carolina. That demonstration was designed to investigate evolving
classification methodologies at a site contaminated with 37-mm projectiles, adding yet
another layer of complexity into the process [87-89]. In this chapter we describe the work
we performed when we participated in those studies and summarize the results we
obtained.

a) Camp Sibert

In 2006, researchers affiliated with Sky Research, Inc. collected data at Camp Sibert
using the EM-63, a cart-based step-off time-domain EMI sensor produced by Geonics
Ltd.[70]. The targets buried in 216 cells—some of which were empty—included
unexploded 4.2" mortar shells, mortar explosion byproducts like base plates and partial
mortars (i.e., stretched-out half-shells), smaller shrapnel, and unrelated metallic clutter;
some examples appear in Figure 3.26. The different items were distributed as shown in

(d).



(b) Base plate

Type Training Testing Total
UXxX0O 38 34 72
Partial 12 23 35
Base 5 40 45
Scrap 6 25 31
Clutter 4 22 26
Empty 1 6 7
Total 66 150 216
(c) Half-shell (d) Cell contents

Figure 3.26: Camp Sibert anomalies: 4.2 inch, base plates and

partial mortars.

We analyzed the Sibert data using HAP and NSMS. By combining those two techniques
we made sure our method of analysis [123,63] avoided the tendency of inversion
algorithms to linger in local minima. We performed the localization step independently at
the outset and then used its results to help in the characterization, allowing for fast and
accurate determination of the total NSMS for each target. We classified these NSMS
values using a heuristic pattern-matching method (Section 0), an open-source
implementation [124] of SVM (Section 0), and mixed modeling (Section 0). The SVM-
based classification improved upon template-matching [64,65] in that it required less
human intervention and was thus faster to run and easier to adapt to other sets of
observations. On the other hand, the semi-supervised Gaussian mixture model provided a
classification performance exceeding that of SVM, which made it our preferred statistical
classification procedure for use in all subsequent classification tasks.

i) Target location and characterization; preliminary pattern-matching classification

We started the procedure by applying HAP to determine the target location for each cell.
Figure 3.27 compares actual and inverted data at the first and 20th time channels (top and



bottom rows respectively) for one cell. To find the target we take a fictitious 5 m x5 m
flat square surface concentric with the plot and located 30 cm below the sensor (i.e., at
ground level) and divide it into 11 x 11 patches, each of which is assumed to contain a
magnetic-charge distribution of uniform density. We take the measured field data (seen
on the left column of figure 33) and use Eq. (69) to determine q, which in turn allows us
to determine w(r) using Eg. (71) and construct the matrices of Eq. (68) to find the
location. We do this separately for every time channel and get consistent location

estimates from gate to gate, which lends credence to their precision. The depths thus
determined are also acceptably close to the ground truth.

After finding the locations we run a fully three-dimensional orientation-free NSMS code
to determine the time-dependent total NSMS amplitude for all cells. To compute Q(t) we

surround the target with a prolate spheroid of semiminor axis a=5 cm and elongation
e=b/a=4. This spheroid is divided into seven azimuthal belts, each of which is assumed
to contain a radial-magnetic-dipole distribution of constant density. The spheroid is
placed at the location estimated by the HAP method and the orientation given by the
dipole moment m obtained from Egs. (66) and (59)-(61). With all the pieces in place, we
extract Q(t) for the target. The inverted total NSMS for all anomalies, and for 4.2"”

mortars, base plates, and partial mortars are depicted in figure 34.

It is evident that there are distinguishable differences between the total NSMS for the
4.2" mortars, the base plates, and the partial mortars. Particularly at late times, each target
has different natural decay characteristics that depend on its geometry and material
properties. It is also important to notice that the total NSMS for the 4.2"" mortars is very
well grouped. To further simplify the classification task we used the Pasion-Oldenburg
law to fit the time-dependent NSMS curves, obtaining as a result the amplitudes (k ), the
power-law exponents ( /), and the exponential-decay inverse time constants (), all of
which we tested as classification features. We obtained the parameters by direct nonlinear
least-squares fit of (58) and by linear (pseudo)inversion of its logarithm (77); both
procedures gave consistent results. In general we obtain good fits to the measured fields
[94]; Figure 3.27 shows that the discrepancy between the actual data and the model
prediction runs only to a few percent.
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Figure 3.27: Camp Sibert EM-63 near field distributions: Left and
middle columns: actual and modeled data respectively. Right column:

misfits.

After investigating different combinations of these feature-space parameters we found
that k in conjunction with the ratio Q(t,)/Q(t,) which involves a fixed superposition of

f and y, worked best: the left panel of Figure 3.27 depicts this winning combination for
all items and clearly shows the tight clustering and generous cluster-to-cluster separation
that generally lead to reliable classification. (The 15th time channel, centered at about 2.7
ms, was chosen because it takes place late enough to show the behavior described above
but early enough that all targets still have an acceptable signal-to-noise ratio; nearby time
channels produce similar results.) When we received the ground truth for all targets we
proceeded to construct the ROC curve that appears in the right panel of Figure 3.36. We
see that only one excavation out of 130 anomalies is necessary before all UXO are
identified correctly.

We obtain similar results using the SVM algorithm.
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Figure 3.28: Inverted total NSMS for all anomalies: 4.2 mortars, base
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Figure 3.30: a) Unexploded shell from Cell No. 7 and (b,c) the two
false alarms obtained by the SVM classifier using k and as

discriminators.

i) SVM classification

We use a Gaussian RBF kernel for the SVM analysis. The kernel width turns out not to
have much influence on the outcome; we usually set it so that a unit in a typical x- or y-
axis in a log plot (for example,Figure 3.31) comprises 100A Gaussian widths, where A is
the dimensionality of the feature space. To find the capacity C we train the SVM with a
subset of the training data and a given C, scramble the training set, and use a new subset
of the data for testing. We then vary C, setting it to a high value initially and then
lowering it, and keep the lowest capacity with which the machine identifies all dangerous



items in the test. The procedure is rather ad hoc but effective for the data at hand, given
the small sample sizes, the low dimensionality of the feature spaces, and the speed of the
SVM implementation. A more systematic search for C and y using five-fold cross-
validation [115-Error! Reference source not found.] recommends slightly higher
capacities that result in identical predictions.

For R and k as features we find the best SVM performance using C = 10. The results are
displayed (for testing data only) in SVM classification of Camp Sibert anomalies using k
and R with C = 10and shown pictorially (for both training and testing) in Figure 3.31.
The matrix element ¢, in the table denotes an item of category i that was identified by

the SVM as belonging to category j; in other words, the rows of this contingency table
correspond to the ground truth and the columns to predictions. The small markers in the
plot show the ground truth (hollow for training data and filled for the tests), while the
large markers point out the items for which the SVM makes wrong predictions. For
example, a small yellow upright triangle surrounded by a large cyan square is a piece of
scrap (clutter unrelated to UXO) incorrectly identified as a base plate. The UXO, with
their high initial amplitudes and slow decay, are clustered at the top right corner. We see
that there are only two false alarms (i.e., objects identified with UXO that were in fact
something else) and that all potentially dangerous items have been identified correctly.
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Figure 3.31: Result of the SVM classification for the Camp
Sibert anomalies using the logarithms of k and . The SVM has
been trained with capacity C = 10 and kernel width o = 1/200.
The small markers denote the ground truth for both training

(hollow) and testing (solid) cells. The larger markers highlight



the cases where there is disagreement between the ground truth
and the SVM prediction.

Table 4. SVM classification of Camp Sibert anomalies using k and R with C = 10

SVM prediction
UXO Partal Base Clutter Scrap Empty
X0 14 0 0 0 0 0
Partial 0 22 0 1 0 0
Base 0 0 39 1 0 0
Clutter 0 0 | 19 0 2
Scrap Y 4 0 3 H 13 0
Empty 0 | 1 1 2 1

k. R. C=10

Ground truth

The false alarms, two pieces of non-UXO clutter, appear in Figure 3.30: a) Unexploded
shell from Cell No. 7 and (b,c) the two false alarms obtained by the SVM classifier using
k and as discriminators(b) and Figure 3.30: a) Unexploded shell from Cell No. 7 and (b,c)
the two false alarms obtained by the SVM classifier using k and as discriminators(c).
They are seen to be similar to the 4.2"” mortars in size and metal content (cf. Figure 3.37:
Five ROC curves that indicate the performance of the mixed model approach to Camp
Sibert data(a)), which makes their k and R values lie closer to the tight UXO cluster than
to any other anomaly. Here we note that, as can be seen in Figure 3.26 (d), the training
data provided by the examiners was somewhat biased toward UXO, while clutter and
scrap samples were underrepresented (this was not the case with the testing data and
should not be expected in future tests). If we switch training and testing data in the SVM
analysis we can achieve perfect discrimination without varying the capacity—though in
this case we have more training data than tests. This highlights the importance of having
a diverse collection of representative samples to use during the training stage.

Table 5. SVM classification of Camp Sibert anomalies using y and k with C =9

SVM prediction

¥ &€= —0X0 Partal Base Clutter Scrap Empty
= UXxo 34 0 0 0 0 0
= | Partial 5 17 0 1 0 0
< | Base 0 0 39 0 1 0
S | Clutter 0 0 4 15 5 1
S | Scrap 2 1 3 5 1 0
= | Empty 1 1 2 2 0 0

We can repeat the analysis using other two-dimensional combinations of the Pasion-
Oldenburg parameters. Combining k and y yields results similar to those of k and R, as
Figure 3.32 and show. Figure 3.33 and Error! Reference source not found. show the
classification resulting from the use of # and y as discriminators. The table shows that we
can obtain reasonable discrimination, with all the UXO once again correctly identified,
but the increased number of false alarms and the very high capacity needed (four orders



of magnitude larger than the previous ones) indicate that this combination of parameters
may not be optimal and that this machine is prone to overfitting. A glance at the figure
shows the clustering is much less clear-cut than in the previous cases, partly because the
range of S is rather small. In fact, combining k and g greatly reduces the performance,
since the small S-range and the close similarity in k of the UXO and the partial mortars
cause an overlap between the two categories that cannot be disentangled.

It is helpful and straightforward to increase the dimensionality of the feature space.
Figure 3.33 shows the discrimination obtained by running the SVM using all three
Pasion-Oldenburg features. The capacity C =9 here, and increasing it changes the results
only slightly. The number of false alarms increases: we get the same two pieces of scrap
from before, and now a few of the partial mortars are identified as UXO by the algorithm,
due in part to the small range of $ and in part to the large gap between the UXO and the
other anomalies, clearly visible in the figure, which again calls out for more and more-
diverse training information.

Finally, it is possible to dispense with the Pasion-Oldenburg model altogether and run an
SVM using the “raw” Q(t) as input. The feature space has dimensionality A=25. We

scale the values by Q(t,) and take the logarithm. We find C =20 to be the optimal value.
Table 4 shows the results. The performance is slightly inferior to that of R vs. k; the usual

two false alarms are there, along with a few new ones. All the UXO are identified
correctly. We can also use the logarithm of Q without any scaling (though the SVM

internally rescales the feature space to [0,1]*). A capacity C=1 suffices here. The results

appear on Error! Reference source not found.. All dangerous items are once more
identified as such.
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Figure 3.32: Result of the SVM classification for the Camp

Sibert anomalies using the logarithms of the Pasion-Oldenburg



parameters k and y. The SVM here has a capacity C = 9. The
small markers denote the ground truth for both training (hollow)
and testing (solid) cells. The larger markers show the wrong
SVM predictions.
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Figure 3.33: Result of the SVM classification for the Camp

Sibert Anomalies using the logarithms of the Pasion- Oldenburg

parameters 3 and y. The SVM capacity C = 105. The small
markers denote the ground truth for both training (hollow) and
testing (solid) cells. The larger markers highlight the wrong
predictions made by the SVM.
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Figure 3.34: SVM classification of the Camp Sibert Anomalies
using the logarithms of k, b, and g. The SVM has C = 9. The
small markers denote the ground truth for both training and
testing cells. The larger markers highlight the cases where there
is disagreement between the ground truth and the SVM

prediction.

Table 6. SVM classification of Camp Sibert anomalies using 3 and y with C = 105

SVM prediction

Y P G= 18 UXO  Pardal Base Clutter Scrap  Empty

= Uxo 34 0 0 0 0 0
Z | Ppartial 0 14 5 2 1 I
o Base 3 0 37 0 0 0
S | Clutter 0 | 5 14 1 1
Z | Scrap 1 1 1 3 13 1
~ | Empty 2 0 0 3 1 0




Table 7. SVM classification of Camp Sibert anomalies using the complete NSMS time
decay

SVM prediction
UXO — Partial Base Clutter  Scrap  Empty
Uxo 34 0 0 0 0 0
Partial 0 15 0 7 I 0
Base ) 0 34 3 0 0
Clutter 0 2 3 14 Bl 2
Scrap } 1 3 3 12 0
Empty 2 2 1 0 I 0

QIQin) C=20

Ground truth

i) SVM analysis of Camp Sibert data: summary

In this section we applied the NSMS model to EM-63 Camp Sibert discrimination data.
First the locations of the objects were inverted for by the fast and accurate dipole-inspired
HAP method. Subsequently each anomaly was characterized at each time channel
through its total NSMS strength. Discrete intrinsic features were selected and extracted
for each object using the Pasion-Oldenburg decay law and then used as input for a
support vector machine that classified the items.

Our study reveals that the ratio of an object’s late response to its early response can be
used as a robust discriminator when combined with the Pasion-Oldenburg amplitude k.
Other mixtures of these parameters also result in good classifiers. Moreover, we can use
Q directly, completely obviating the need for the Pasion-Oldenburg fit. In each case the

classifier runs by itself and does not require any human intervention. The SVM can be
trained very quickly, even when the feature space has more than 20 dimensions, and it is
a simple matter to add more training data on-the-fly. It is also possible to use already
processed data to classify examples as yet unseen.

We should stress that none of our classifications yielded false negatives: all UXO were
identified correctly in every instance. (This is due in part to the clean, UXO-intensive
training data provided by the examiners and may change under different conditions.) The
number of false alarms (false positives) varies with the classification features, but is in
general low and can be as low as 2 out of 36 reported positives. Figure 3.31, Figure 3.32
and Figure 3.33 show, among others, how these false alarms occur: Some of the clutter
items have a response that closely resembles that of UXO. While this will inevitably
arise, it may still be possible to make the SVM more effective—and perhaps approach
100% accuracy—by including some of these refractory cases during the training. That
said, there will certainly be cases in the field where the non-uniqueness inherent to noisy
inverse scattering problems will cause the whole procedure to fail and yield dubious
estimates. In those cases it will be necessary to assume the target is dangerous and dig it

up.

In a completely realistic situation, where in principle no training data are given and the
ground truth can be learned only as the anomalies are excavated, one can never be sure



that the data already labeled constitute a representative sample containing enough of both
hazardous and non-hazardous items. This difficulty is mitigated by two facts: 1) Usually
at the outset we have some idea of the type of UXO present in the field, and 2) The
(usually great) majority of detected anomalies will not be UXO and thus random digging
will produce a varied sampling of the clutter present. Methods involving semi-supervised
learning exploit this gradual revealing of the truth and have been found to perform better
at UXO discrimination than supervised learning methods like SVM when starting from
the point dipole model [63,66]. (Active learning methods, which try to infer which
anomalies would contain the most useful information and could thus serve to guide the
anomaly unveiling, show further, though fairly minor, improvement.) Combining this
more powerful learning procedure with the excellent performance of the HAP/NSMS
method may enhance the discrimination protocol and should be the subject of further
research.

In summary, the results presented here show that our search and characterization
procedure, whose effectiveness is apparent from several recent studies [64-65,67], can be
combined with an SVM classifier to produce a UXO discrimination system capable of
correctly identifying dangerous items from among munitions-related debris and other
natural and artificial clutter.

We repeated the analysis using the semi-supervised Gaussian mixture approach. The
solution process and results are presented in Section 0. We found that the method
provides excellent classification performance and has the advantage over SVM that it is
less dependent on training data. This made it our preferred statistical classification model,
and we have continued to prefer it.

iv) Mixed model approach applied to Camp Sibert data

We also tested the mixed model approach [107-114]. on the 216-sample Camp Sibert
data. Initially we took the time decay of the total NSMS over 25 time channels for all
targets and parameterized it using the Pasion-Oldenburg law of equation. Taking the
logarithm of that equation we arrive at the linear model

InQ(t) = Ink—ﬂlnt—yt'

As features we use k and the ratio Q(t.)/Q(t). Figure 3.35 is a log-log plot of
Q(t.)/Q(t) vs. k. Initially we used K-means clustering to estimate the number of target

types; the algorithm found five clusters (see Figure 3.35). Then we proceeded to classify
the targets. The resulting classification into the five classes is depicted in Figure 3.36 and
the corresponding ROC curves are presented inFigure 3.37.

The results illustrated that the semi-supervised Gaussian mixture model provides
excellent classification performance over the SVM. This made the semi-supervised
Gaussian mixture our preferred statistical classification model, and was used in the
consequence classification studies.

(77)
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Figure 3.35: Log-scale plot of vs. for Camp Sibert data
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Figure 3.36: Classification of 216 targets into five classes using




a bivariate normal mixture. Also shown are the 95% confidence

ellipses.
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Figure 3.37: Five ROC curves that indicate the performance of
the mixed model approach to Camp Sibert data.

b) Camp San Luis Obispo (TEMTADS, MM, BUD)

The discrimination test at Camp Sibert UXO site was relatively simple: it involved
discrimination of large intact ordnance from smaller clutter using data from using first-
generation EMI sensors. Real sites, however contain assorted types of ordnance, many
smaller than 4.2"”, and the need to tackle this more forbidding condition has prompted
significant developments in both detection and discrimination technologies. Acceptance
of these technologies requires demonstrating that they can achieve 100% discrimination
confidence in terms of the range of ordnance types and their overlap with clutter, while
taking into account the terrain/vegetation at the site and the effects of the geological
setting on EMI sensors [3,7,Error! Reference source not found.,63,68,69].

To demonstrate the applicability of the classification technologies for a live-UXO site
with more challenging topography and a wider mix of targets-of-interest, in 2009 ESTCP
conducted a second discrimination study at the SLO live UXO site in California.
Magnetometers and first-generation EMI sensors were deployed to the site and used in
survey mode. Then the BUD and TEMTADS systems were used to perform cued
interrogation of the detected anomalies. Simultaneously, the MetalMapper was used in



both survey and cued modes. The collected data were preprocessed by data collection
demonstrators, who performed background subtraction, drift correction, and sensor
positioning.

The classification demonstrators were provided with calibration data sets for algorithm
testing and classification performance analysis. The goal was not only to identify if the
target was harmful, but also to classify it completely; i.e., to identify its type, size, and
caliber. The blind data sets contained one or more buried objects that could be either one
of four ordnance items used at the site—60-mm mortar shells, 2.76" rockets, 81-mm
projectiles, and 4.2" mortars—or a piece of clutter. The clutter items found on the site are
UXO explosion byproducts like partial mortars (i.e., stretched-out half-shells), smaller
shrapnel, and man-made metallic clutter; some examples appear in Figure 3.38.

This section presents the discrimination studies carried out on 1282 TEMTADS and 1407
MetalMapper cued blind data sets. The total parameterized NSMS amplitudes were used
to discriminate TOI from metallic clutter and to classify the different hazardous objects.
First we used the combined NSMS/DE algorithm to determine the total NSMS for each
TOI from the training data provided by SERDP. We used the HAP method and a
combined dipole/Gauss-Newton approach to validate the location and orientation
estimates given by NSMS/DE. We then used the inverted total NSMS to extract time-
decay classification features for all cases and input these to several multi-class statistical
classification procedures to perform discrimination. Once our inversion and classification
algorithms were tested on calibration data we repeated the procedure on the blind data
sets. The inverted targets were ranked by target ID and submitted to SERDP for
independent scoring.



Figure 3.38: Found Clutter Items on SLO UXO live sites.

i) The total NSMS for discrimination

The reader may recall from chapter (3) that the initial amplitude and the decay rate of the
total NSMS depend on the size, the geometry, and the material composition of the object
it represents. Early-time responses are associated with surface eddy currents and the
associated early-time NSMS is directly proportional to the object’s surface; at later times
the currents diffuse gradually into the object and the response is related to the target’s
volume. Thus a small and thin target like the partial 2.36" rocket has a relatively small
initial NSMS that decays quickly, while a large object like the 4.2"" mortar of figure 46
has a strong immediate response that decays slowly, particularly along its axis of
symmetry.

These considerations may be put on a more quantitative footing through discrimination
features that summarize these characteristics for the different NSMS curves. To that end
we employ the Pasion-Oldenburg law in its parameterized form. We tried different
combinations of B_ B _, and y_ _ for discrimination and in the end settled for
log[M ,(t,)/ M_(t)] and M_(t,) as features for use with the model-based supervised

clustering figure 47.



i) SLO discrimination results

The SERDP Program Office provided us with 188 TEMTADS calibration data sets for
the inversion and classification algorithms testing performance analysis. Our objective
here was not only to identify if a given target was a UXO or not, but also to classify it
completely; i.e., to identify TOI type, size, and caliber. We had the same number of
calibration data sets for the Metal Mapper sensor, but we used only two data sets for each
TOI, for a total of ten data sets. The blind data sets contained a single or multiple buried
objects that could be either one or more TOI.

We used the 188 TEMTADS calibration data to build a catalog of expected total NSMS
values that were then tested on the 1282 other cells. The TEMTADS took data over 115
channels that span in approximately logarithmic fashion a lapse of time between 100 us
and 24 ms. The TEMTADS was always placed 30 cm above the ground. For each data set
we run the combined NSMS-DE and NSMS-HAP method [4] to determine object
locations.

The target response was approximated with set of magnetic dipoles distributed on a
spherical surface of radius 5 cm. This sphere is divided into 17 sub-surfaces, each of
which is assumed to contain a magnetic-dipole distribution of constant density. Once the
location of the sphere’s center is determined then the magnitude of each responding
source is obtained and the total NSMS is calculated. The inverted total NSMS curves for
SLO TEMTADS calibration (green lines) and blind data sets (red lines) are depicted in
figure 45 and figure 46 for partial 2.36" rockets, 4.2" mortars, 81-mm projectiles, 2.36"
rockets, and 60-mm mortars. The results indicate that the inverted and calibration total
NSMS time decay curves are similar and are good discriminators. Also, as the size of the
TOI decreases the inverted total NSMS time decay curves show a larger spread, making
them more difficult harder to discriminate.
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Figure 3.39: Inverted total NSMS time decay profiles for the



Total NSMS [ast)

Tetal NSMS [Art)]

2.36 partial rocket. The green lines depict calibration data and
the red lines correspond to blind SLO TEMTADS data sets.

Totst NSNS [Ast|

Total NSMS [Ard)

Figure 3.40: Inverted total NSMS time decay profiles for 4.2
mortars (top left), 81-mm projectiles (top right), 2.36 rockets
(bottom left), and 60-mm mortars (bottom right) in the SLO
TEMTADS test. The green lines depict calibration data and the

red lines correspond to blind data sets.
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Figure 3.41: Result of the supervised clustering classification
for the SLO-TEMTADS anomalies using the logarithms of and
. The supervised clustering has been trained with calibration
data. The red markers correspond to clutters and the white ones
to TOI.

We also determine the Pasion-Oldenburg parameters k_, A, ,and y, for each anomaly

from equation (77); the inverted parameters were used in the supervised clustering
algorithm. We have previously found [40] that the ratio of the inverted total NSMS at the
82nd time channel to that at the first time channel, which involves a fixed superposition
of B and y, shows discernible clustering for this particular data set when combined with

the third parameter. The values of logio(M,_(t)/M_(t,)) versus logio(M,(t)) are

plotted in figure 47 for all TEMTADS data sets. We see that the inverted parameters are
well clustered, and for the most part noticeably distinct from those of the others,
suggesting that this two-dimensional feature space is good for classification purposes.
This suggestion is confirmed by the classification results that appear in Figure 3.42.
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Figure 3.42: ROC curve for SLO TEMTADS test data.

The inverted SLO TEMTADS and MetalMapper test data were ranked by target type and
caliber and submitted to the SERDP office for independent scoring, which was carried
out by personnel from the Institute for Defense Analyses (IDA). Our discrimination
results are summarized in figure 49, Figure 50 and Figure 51 Our classification technique
was able to correctly identify all big UXO, (the 2.36", 81-mm and 4.2"" projectiles) for
both TEMTADS and MetalMapper data. The algorithm had only one false negative (a
60-mm mortar) for MetalMapper. In the case of TEMTADS the algorithm missed two
2.36" rockets and five 60-mm mortars. These false negatives were mostly due to small
signal-to-noise ratios.
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Figure 3.44: ROC for SLO TEMTADS data for individual TOI.

Figure 3.45: ROC for SLO MetalMapper data sets: individual TOI.
iii) Comparisons between NSMS and Dipole models

(1) Calibration SLO-TEMTADS data

We now compare the dipole and NSMS models as applied to SLO calibration data. The
data were inverted using both gradient search and DE. For the gradient search 100 initial
guesses were used to avoid local minima, with 30 iterations for each initial guess to
guarantee convergence. For DE 100 iterations were used. Once the targets’ locations
were determined the dipole polarizability matrix and the total NSMS were determined
and diagonalized using JD. The inverted dipole tensor principal elements and total NSMS
for two calibration cells (410 and 489, shown in Figure 3.46) appear in Figure 3.47 he
inverted dipole principal polarizability elements are seen to be totally different for the
same 60-mm mortar. For Cell #489 the dipole elements are not symmetric, and their
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inverted magnitudes are much higher than for the other cell even though the targets and
burial depths are the same. The simple dipole model clearly breaks down while the
NSMS technique predicts consistent results and is more stable and accurate. It is worth
pointing out that other researchers reported the same problem with this cell when using
the dipole model and overcame it using multiple dipoles.

Figure 3.46: 60-mm mortars actually found in calibration cells
#410 and #489.
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Figure 3.47: Left: Principal elements of the polarizability tensor versus
time for a 60mm mortar in the SLO study. Right: Total NSMS time-decay
curves for the same cases. The red curve corresponds to calibration Cell
#489 and the blue curve to calibration Cell #410.



(2) Blind SLO-TEMTADS data sets

A similar performance was observed for deep targets in blind-test data. Figure 54
compares library and inverted data using the dipole and NSMS models. In this case a 60-
mm mortar was buried 35 cm deep. Due to the low signal-to-noise ratio the dipole model
was unable to predict stable, symmetric polarizability tensor elements, but the total
extracted NSMS curves show axial symmetry and resemble the 60-mm library curve
well.
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Figure 3.48: Comparison between library and inverted blind tests for the
dipole model (left) and NSMS model (right).
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Figure 3.49: ROC curves for SLO TEMTADS and SLO MetalMapper
discrimination studies. Green and red curves: Sky/UBC dipole results;

blue curve: NSMS results obtained by our Dartmouth/Sky group.

(3) SLO-Discrimination studies

Using NSMS we inverted all SLO blind-test data sets and sorted them by target ID. The
same anomalies were inverted by researchers at SKY/UBC using the dipole model. The
ROC curves for the SLO TEMTADS and SLO MetalMapper discrimination studies are
depicted in Figure 3.49. The NSMS performs slightly better than the dipole statistical
approach for TEMTADS data. For the SLO MetalMapper data sets the NSMS shows
higher false positives in comparisons with the dipole model, but overall it has only one
false negative, while the dipole model had three false negatives.
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Figure 3.50: ROC curves for SLO BUD discrimination studies.

iv) SLO BUD data inversion and classification studies

The combined NSMS-DE algorithm was applied to the SLO live site BUD data sets (539
anomalies) and targets intrinsic (total NSMS) and extrinsic parameters were extracted for
each anomalies. The discrimination features (size and shape information) were extracted
from the total NSMS time decay history curve and anomalies were classified using the
provided 69 training data set. In addition, the library matching technique, that uses the
entire time decay history of the total NSMS, was also used for the classification. The
inverted targets were ranked as TOI and non-TOI items. The ROC for the SLO BUD data
sets is shown on figure 56. The studies showed that only two 2.36 inch rockets were
misclassified.
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Figure 3.51 : SLO TEMTADS test Cell #16. Left: All 25 eigenvalues
vs. time. Right: Four highest eigenvalues vs. time. The target

response is weak and mixed with the sensor’s electronic and

background noise.
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Figure 3.52 : SLO TEMTADS test Cell #103. Left: All 25 eigenvalues
vs. time. Right: Above-threshold eigenvalues vs. time. Only two
eigenvalues are above the threshold, indicating a low signal-to-noise

ratio.
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v) SLO retrospective analysis

During the SLO test our algorithms missed five 60-mm mortars and two 2.36" rockets.
The missed anomalies were in Cells #16, 103, 241, 441, 444, 748, and 1285. Figure 57
through Error! Reference source not found. present the results for each of these
anomalies, along with our comments.
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Figure 3.53: SLO TEMTADS test Cell #241. Left: All 25 eigenvalues
vs. time. Right: Above-threshold eigenvalues vs. time. There more
than three eigenvalues above the threshold, which indicates that the
cell contains more than one target. The curves decay fast, illustrating
that the targets are small.
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Figure 3.54: SLO TEMTADS test Cell #441. Left: All 25
eigenvalues vs. time. Right: Above-threshold eigenvalues vs. time.
There more than three eigenvalues above the threshold, indicating
that the cell contained more than one target. The fast-decaying

curves illustrate that the targets have thin walls or are small.
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Figure 3.55: SLO TEMTADS test Cell #444. Left: All 25
eigenvalues vs. time. Right: Above-threshold eigenvalues vs.
time. There more than three eigenvalues above the threshold,
indicating that the cell contained several targets. In addition, the

curves decay fast, illustrating that the targets are small.
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Figure 62: SLO TEMTADS test Cell #748. Left: All 25 eigenvalues
vs. time. Right: Above-threshold eigenvalues vs. time. More than three
fast-decaying above-threshold eigenvalues indicate the presence of

several small targets.
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Figure 63: SLO TEMTADS test Cell #1285. Left: All 25 eigenvalues
vs. time. Right: Above-threshold eigenvalues vs. time. Again, the
eigenvalues indicate that there are several small targets in the cell.



¢) Camp Butner

The former Camp Butner is a 40,384-acre site located approximately 15 miles north of
Durham and straddling Durham, Granville, and Person Counties, all in North Carolina.
The War Department acquired the property from private landowners in 1942 for use as a
training and cantonment facility during World War Il. The camp was primarily
established for the training of infantry divisions (including the 78th, 89th, and 4th) and
miscellaneous artillery and engineering units [58]. A large variety of munitions have been
reported as used at the former Camp Butner, including rifle grenades, 2.36" rockets, 37-
mm and 40-mm rounds, 81-mm mortars, and 105-mm, 155-mm, and 240-mm projectiles.
Although the historical records are not definitive, it is thought that the targets of interest
at the site of the test are mostly 37-mm and 105-mm projectiles; some of the former have
a copper band, others do not. The clutter items found on the site are for the most part
UXO explosion byproducts like partial mortars (i.e., stretched-out half-shells), smaller
shrapnel, and man-made metallic clutter. An initial surface clearance was carried out on
the site prior to the collection of digital geophysical data. Then an EM61 survey was
conducted on two 100" x 100" grids for site characterization. A surface clutter analysis
and excavation of one of these 100’ x 100’ grids confirmed the identities of the targets of
interest (TOI), provided an indication of their depth distribution, and gave the
demonstrators some information about the clutter environment at the site.

At a live site such as this, the ratio of clutter to TOI is such that only a small number of
TOI may be found in a 10-acre area, far from enough to determine any demonstrator’s
classification performance with acceptable confidence bounds. To avoid this problem, the
site was seeded with enough TOI to ensure reasonable statistics. Three types of targets—
37-mm and 105-mm projectiles and M48 fuze assemblies—were thus used. The survey
data for the study were collected with a line spacing of 50 cm. The detection threshold
was set to detect all 37-mm projectiles at a depth of 30 cm [85], which for the EM61-
MK2 carted survey corresponds to a threshold of 5.2 mV in the second time gate. Using
this detection threshold a first anomaly list was produced. This list was used as a starting
point for two detailed cued surveys carried out using TEMTADS and the MetalMapper.

Our team processed both data sets independently using our advanced EMI discrimination
techniques and occasionally requesting training data to assist during the classification
stage. The main objective of this section is to demonstrate the discrimination performance
of the ONVMS model [99] in a live UXO site under realistic field conditions; the method
is combined with DE optimization (the two-step approach described in Section 2.3) to
determine the locations, orientations, and time-dependent total ONVMS of the subsurface
targets. The latter depends on the intrinsic properties of the object in question and can be
used for discrimination. To streamline the process we employed JD to estimate the
number of potential targets before inverting. To classify the targets in the MM data sets
we performed semi-supervised Gaussian-mixture model-based clustering on the total
ONVMS in a process similar to that described. We now present the results of our
discrimination and classification strategies when applied to the Camp Butner TEMTADS
and MM blind cued data sets. The SERDP office provided us with 2291 cases
interrogated with each system. We divided our team into two groups: One group
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processed TEMTADS data and the other worked on the MM sets; each group worked
independently using different classification strategies. Each team constructed a custom
training list (amounting to less than 5% of the entire blind data) and requested the ground
truth for those anomalies for use during the classification stage.

i) TEMTADS data discrimination strategy and classification results using supervised

clustering

We processed all the TEMTADS data using the JD and ONVMS models. Initially we
used JD to estimate the data quality and the number of potential targets. The JD algorithm
constructs a multi-static response matrix using TEMTADS data and computes its
eigenvectors and eigenvalues, the latter as a function of time. Studies show that these
eigenvalues are intrinsic properties of the targets and that each target has at least three
eigenvalues above the threshold (noise level). For example, Figure 3.57 shows the
eigenvalues extracted for a 105-mm HE projectile, a 105-mm HEAT round, an M-48
fuze, and a 37-mm UXO. As the number of targets increases (as in Figure 3.56 and the
third row of Figure 3.64), so does the number of eigenvalues above the noise level. We
thus examined the eigenvalues versus time for each case and used them to estimate the
number of targets.
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Figure 3.56: TEMTADS multi-static response matrix eigenvalues

versus time for some samples of requested anomalies.
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time for a 105-mm HE projectile and a 105-mm HEAT round (top row),
an M-48 Fuze and a 37-mm munition (center row), and two clutter



scenarios, one with two items (left) and another with several (right) (third

row).

In addition, based on the eigenvalues’ time-decay characteristics we built a custom
training list. For the most part, the list contained anomalies that had too many above-
threshold eigenvalues, like the samples depicted in Figure 3.56. We requested two
batches of training data. The first contained 65 anomalies, all of which were clutter; some
had six eigenvalues above the noise level, while others had several eigenvalues mixed
with the noise. The second batch consisted mostly of UXO. Once we had the ground truth
for all 75 custom identified anomalies we proceeded to invert all TEMTADS data sets
using a multi-target ONVMS algorithm combined with DE. We extracted the total
ONVMS for every anomaly. Armed with the custom identified training list and the
inverted total ONVMS for each case we created a library for M-48 fuzes and 37-mm
projectiles without copper band. We did not request training data for either of the
105-mm UXO or for the 37-mm projectile with copper band because we already had
TEMTADS test-stand data for these targets. The JD and ONVMS analysis clearly
showed the presence of those items at the site. We implemented a library-matching
technique in which we quantified the mismatch in total ONVMS between library samples
and blind items and used it to classify UXO and non-UXO items. The inverted total
ONVMS for the anomalies that were classified as 105-mm HE projectiles, 105-mm
HEAT rounds, M-48 fuzes, and 37-mm UXO with and without a copper band are
depicted in Figure 3.58 and Figure 3.59 All the inverted total ONVMS are seen to cluster
well, and each target has a total ONVMS with features—such as its amplitude at the first
time channel, its decay rate, or the separation between the primary (blue lines) and
secondary (red and green lines) components at different time channels—that make it
amenable to identification. (The most difficult differences to discern were between the
M-48 fuzes figure 66 and the 37-mm projectiles without copper band of Figure 3.59 ).
These features allowed us to classify targets as UXO or clutter and also let us sort the
UXO by caliber. With this knowledge we created a prioritized dig list that we cross-
validated using the time-decay curves of the JD eigenvalues.

The final prioritized dig list was submitted to the Institute for Defense Analyses (IDA)
for independent scoring. The scored results were sent back in the form of a receiver
operating characteristic (ROC) curve, which we depict in Figure 3.60. We can see that
a) of the 75 targets that were dug for training, 68 targets were not TOI (shift along x-axis)
and seven were (shift along y-axis); b) for 95% TOI classification (the pink dot in Figure
3.60) only seven extra (false positive) digs are needed; c) to classify all TOI correctly (the
light blue dot) only 21 extra (false positive) digs are needed; d) for increased
classification confidence the algorithm requested an additional thirty digs after all TOI
had been identified correctly.
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i) MetalMapper data discrimination strategy and classification results using

supervised clustering

All Camp Butner MM data sets were processed using a multi-object ONVMS/DE code.
The combined procedure yields the total ONVMS for each anomaly, which, like the total
NSMS, is intrinsic to the object it represents and can therefore be used for classification.
As with the total NSMS, early-time ONVMS responses are associated with superficial
eddy currents and thus directly proportional to the size of the object’s surface, while late-
time signals are due to volumetric currents and thus proportional to the target’s entire
volume.

These physics-based features were utilized in the supervised clustering algorithm. We
used the ratio of the inverted total ONVMS at the 30th time channel to that at the first.

The values of log,,[M_(t)/M_(t,)] Vvs. log,,[M_(t)] are plotted in figure 69(left) for all

Camp Butner MM data sets. We see that the plotted quantities exhibit a wide spread of
values. To use these features for statistical classification, and for determining clusters and
a classification probability function, we started by dividing the scatter plot figure 69(left)
into subsections. We then applied the Gaussian mixture model to each subsection
assuming that there were five clusters. From the Gaussian mixture model we extracted
the mean and standard deviations for each cluster and built a global classification
probability function, depicted infigure 69 (right) that depended on the two feature
parameters. The figure shows that there are 55 well-separated clusters. We next created a
first custom training dig list that contained 55 anomalies, (i.e., one anomaly for each
cluster) and requested the ground truth. The MM data for each scenario were inverted
using the combined ONVMS-DE algorithm as though there were one, two, or three
targets present, and the resulting total ONVMS amplitudes were compared. Whenever we
spotted significant differences we examined the curves visually (a sample case is depicted
in figure 70) and, based on this examination, requested the ground truth for an additional
60 datasets. Once we had the ground truth for a 121 custom training data set, we
classified all targets as either TOI or non-TOI items using the probability function of
Figure 3.61 The classification based on the supervised clustering is plotted in Figure 3.63:
the red circles correspond to TOI, and the green dots to clutter.
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We see that the Gaussian mixture model separates and clusters inverted parameters well.
The clusters for the TOI are noticeably distinct from those of the others, suggesting that
this two-dimensional feature space is appropriate for sound classification.

Using these results we created a prioritized dig list for the Camp Butner MM anomalies
and again submitted the list to the Institute for Defense Analyses for scoring. Our
classification results are summarized in the ROC curve of Figure 3.64. We see that a) of
the 121 targets that were dug for training, 120 targets were not TOI (shift along x-axis)
and one was (shift along y-axis); b) for 95% TOI classification (pink dot in Figure 3.64)
eight extra (false positive) digs are needed; c) to classify all TOI correctly (light blue dot)
only 32 additional digs are needed; d) for increased classification confidence the
algorithm requested 33 additional digs after all the TOI were identified correctly.

Our classification results for both TEMTADS and MM were scored independently by the
Institute for Defense Analyses. The scores we obtained reveal that our advanced models
produce superb classification in all cases. There were no false negatives, and less than 5%
of the anomalies had to be dug to achieve 100% correct classification. This is the third



time our advanced EMI and statistical models have shown successful classification
performance on a realistic live-site blind test.
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polarizability tensor versus time for the same case.

iii) A Comparison between ONVMS and Dipole model

To illustrate the ONMVS superior classification performances over a simple dipole
model, here we analyze extracted dipole polarizabilities and total ONVMS for 105 mm
projectile. The data were collected at camp Beale, NC using the TEMTADS sensor. The
object's intrinsic parameters were inverted using the ONVMS-DE and the simple dipole
model-DE algorithms, with 100 iterations. The target dipole polarizability matrix and the
total NSMS were determined and diagonalized using JD, and are illustrated in Figure
3.65. The results show that magnitudes of extracted dipole principal polarizabilities
versus times are out of orders; namely, at early time gates amplitudes of the primary
polarizability Mz are less than the secondary Mxx and tertiary Myy polarizabilities, while
the TONVMS magnitudes have consistent orders for all time channels and provides good
classification parameters.

Conclusions

My Theses supported the development of several innovative, robust, and noise-tolerant
EMI forward models and statistical signal processing methodologies for use in subsurface
target localization, characterization, and classification at live-UXO sites. In this thesis |
have outlined the mathematical fundamentals, physical meaning, and practical realization
of forward models such as the dipole model and the orthonormalized volume magnetic
source (ONVMS) technique. Both of these procedures have been seen to provide an
accurate representation of the EMI responses of subsurface metallic targets. The models
were combined with  data-inversion  approaches—gradient  search, direct
search/differential evolution, and the like—to invert data collected by current advanced
EMI sensors. We also developed and used the HAP method for estimating target
locations directly. In addition, we explored several advanced statistical signal processing
and classification approaches—support vector machines, Gaussian mixture models,
etc.—as possible tools for discriminating UXO from non-hazardous anomalies.

We adapted every model we developed to a complete suite of next-generation sensors,
including the MetalMapper, TEMTADS, MPV, and BUD. Comparison between gradient
search, DE, and HAP showed DE to be the most robust, noise-tolerant and reliable
method to determine extrinsic parameters of targets; the procedure, moreover, requires no
regularization, and works quite well when confronted with multi-target cases. For these
reasons we consider DE to be our foremost choice to estimate target location and
orientation. The combination of DE with the NSMS and ONVMS models was
extensively tested on actual data and provided excellent agreement with the ground truth
at every instance, regardless of the number of targets in the cell. The models were further
combined with state-of-the-art classification algorithms and applied to live-UXO sites.

Initially, we tested the NSMS-HAP-SVM and NSMS-HAP-Gaussian combinations on
EM-63 data taken by ESTCP over 216 test cells at Camp Sibert in Alabama. The
Gaussian mixture model provided excellent classification performance, with neither false



positives nor false negatives, while SVM had a tiny number of false alarms. In the next
test we applied the NSMS-HAP and NSMS-DE combinations to TEMTADS data taken
at the APG standardized test site. We found that the inverted classification feature
parameters (the total NSMS in this case) were well-constrained for all objects and that the
locations inverted using DE were in good agreement with the ground truth. There were
214 anomalies and six types of targets in the APG data set: 25-mm, 37-mm, 60-mm, 81-
mm, and (two kinds of) 105-mm projectiles. For each cell we determined the total NSMS,
extracted discrimination features from the NSMS decay curves, and classified the
features using the Gaussian mixture model and a library-matching technique with the
help of test-stand and calibration data. The results of independent scoring were the
following: 1) All UXO were correctly identified as such and correctly identified by
type/caliber. 2) There was a false positive rate of ~5%.

The classification abilities of the NSMS-HAP and NSMS-DE algorithms in combination
with the Gaussian mixture model and library matching were again put to the test with
data taken at Camp San-Luis Obispo in California using TEMATDS, MM, and BUD.
There were four types of TOIl: 60-mm, 81-mm, 2.36", and 4.2"" munitions. Comparisons
between the different methods demonstrated NSMS-DE to be more robust and stable than
NSMS-HAP when extracting extrinsic parameters from to actual live-site data sets,
particularly in multi-target cases. This made us adopt DE as our “official” procedure for
target pinpointing. The blind test at SLO showed that NSMS-DE can be combined with
the Gaussian mixture model and library matching to reliably classify single well-
separated targets and anomalies with high SNR. However, the method was unable to
identify all targets correctly (it missed respectively one, five, and one targets for MM,
TEMATDS, and BUD). We then conducted a retrospective study that clearly
demonstrated the main difficulties at the SLO site: a low SNR and the abundance of
multi-target cases. To address those issues we extended the NSMS technique, developed
the ONVMS model, and adapted the JD method to next-generation sensors.

The ONVMS model assumes that measured secondary fields are due to a volume
distribution of interacting magnetic dipoles; the corresponding Green functions are Gram-
Schmidt orthonormalized to avoid the ill-conditioning and instabilities that plague multi-
object inversion and to make the method run faster. The JD technique, based on
diagonalizing a multi-static response matrix and associating the number of eigenvalues
above a certain threshold with the number of illuminated targets, is reliable and robust
and, since it requires no inversion, essentially instantaneous. Additionally, the
eigenvalues allow one to perform a preliminary target discrimination.

The resulting ONVMS-DE-JD combined technique was first used to conduct a
retrospective analysis of the SLO data. After that we applied the procedure to yet another
ESTCP blind test, this one held at Camp Butner, North Carolina, using the MetalMapper
and TEMTADS instruments. The TEMATDS and MM data were analyzed independently
of each other. The total time-dependent ONVMS was extracted, inverted, and classified
for each cell using ONVMS-DE-JD and both the Gaussian mixture model and library
matching. Our results, scored by the Institute for Defense Analyses, consistently
demonstrated that our methods do a superb job of classifying anomalies. There were no



false negatives, and less than 5% of the anomalies had to be dug to achieve 100% correct
classification. A high-quality automated UXO discrimination process based on machine-
learning techniques has been demonstrated for reducing the expert workload and
improving the process speed.

Both the SLO retrospective study and the Camp Butner blind test clearly demonstrated
that the suite of advanced modeling and classification tools developed by our group are
robust and noise-tolerant and provide excellent classification results using real-world data
collected by next-generation EMI sensors. ONVMS proved superior to NSMS and simple
dipole model for inversion and classification purposes and shall remain our preferred
method of analysis. The ONVMS-DE-JD combination, supplemented by our
classification algorithms, was further tested under ESTCP Project 201101 using
MetalMapper, MPV, and 2x2 3D TEMATDS data collected at Camp Beale in
California. Not only were the advanced EMI models able to classify all “easy seed UXO
items”, they also managed to identify all other targets, no matter how unexpected or site-
specific, and as small as 3-cm fuzes [Error! Reference source not found.].
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